Câu hỏi:

11/06/2022 1,398

Cho hình chóp S.ABCDSA vuông góc với đáy;SA=a6 . Đáy ABCD là hình thang vuông tại AB, AB=BC=12AD=a. Gọi E là trung điểm AD. Tính bán

kính mặt cầu ngoại tiếp hình chóp S.ECD.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Cho hình chóp S.ABCD có SA vuông góc với đáy;  SA=a căn 6. Đáy ABCD là hình thang vuông tại A và B, AB=BC=1/2AD=a. Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ECD. (ảnh 1)

E là trung điểm ADAB=BC=12AD=a  nên AB=BC=AE=ED=a  BC // AE  tứ giác ABCE là hình vuông suy ra  hay tam giác ECD vuông tại E nên M là tâm đường tròn ngoại tiếp ΔECD .

Gắn với hệ trục tọa độ với AO(0;0;0), ADOx; ABOy; ASOz .

Coi đơn vị độ dài là a=1

Suy ra A(0;0;0), S(0;0;6), E(1;0;0), D(2;0;0), C(1;1;0)  M(32;12;0)  là trung điểm của CD.

 vuông tại E nên tâm mặt cầu ngoại tiếp hình chóp S.ECD thuộc đường thẳng qua M và song song với SA.

Phương trình đường thẳng d qua M và song song với SA có 1 véctơ pháp tuyến thì có dạng:  d:{x=32y=12z=t  

Suy ra I(32;12;t)  là tâm mặt cầu ngoại tiếp chóp S.ECD thì:

IS=ID(32)2+(12)2+(t6)2=(12)2+(12)2+t2

26t=8t=46I(32;12;46)

Bán kính mặt cầu là R=ID=(12)2+(12)2+(46)2=196  hay R=196a .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x)   liên tục trên  và có đồ thị như hình vẽ bên. Số giá trị nguyên của tham số m để phương trình f2(cosx)+(m2018)f(cosx)+m2019=0   có đúng 6 nghiệm phân biệt thuộc đoạn [0;2π]   

Cho hàm số  f(x) liên tục trên R  và có đồ thị như hình vẽ bên. Số giá trị nguyên của tham số m để phương trình  f^2(cosx)+(m-2018)f(cosx)+m-2019=0 có đúng 6 nghiệm phân biệt thuộc đoạn [0; 2 pi]  là (ảnh 1)

Xem đáp án » 16/06/2022 6,014

Câu 2:

Số các đường tiệm cận đứng của đồ thị hàm số y=x+32x21  

Xem đáp án » 11/06/2022 5,910

Câu 3:

Gọi S là tập các giá trị của tham số m để đường thẳng d:y=x+1   cắt đồ thị hàm số y=4xm2x1  tại đúng một điểm. Tích phân các phần tử của S bằng.

Xem đáp án » 16/06/2022 3,773

Câu 4:

Cho hàm số y=x334x232x  có đồ thị như hình bên. Tất cả các giá trị thực của tham số m thỏa mãn điều kiện để phương trình 4|x3|3x26|x|=m26m  có đúng ba nghiệm phân biệt là

Cho hàm số y=x^3-3/4x^2-3/2x  có đồ thị như hình bên. Tất cả các giá trị thực của tham số m thỏa mãn điều kiện để phương trình 4|x^3|-3x^2-6|x|=m^2-6m  có đúng ba nghiệm phân biệt là (ảnh 1)

Xem đáp án » 11/06/2022 2,834

Câu 5:

Cho hàm số y=x33mx2+2(m21)xm3m  (m là tham số). Gọi A, B là hai điểm cực trị của đồ thị hàm số I(2;2) . Tổng tất cả các giá trị của m để ba điểm I, A, B tạo thành tam giác nội tiếp đường tròn có bán kính bằng 5  

Xem đáp án » 16/06/2022 2,289

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho M(1;2;3), N(2;-3;1), P(3;1;2) . Tìm tọa độ điểm Q sao cho MNPQ là hình bình hành.

Xem đáp án » 11/06/2022 1,649

Câu 7:

Để đồ thị hàm số y=x4(m3)x2+m+1  có điểm cực đại mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là

Xem đáp án » 11/06/2022 1,551

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store