Câu hỏi:

11/07/2024 7,494 Lưu

Bác Việt có 12 ha đất canh tác để trồng ba loại cây: ngô, khoai tây và đậu tương. Chi phí trồng 1 ha ngô là 4 triệu đồng, 1 ha khoai tây là 3 triệu đồng và 1 ha đậu tương là 4,5 triệu đồng. Do nhu cầu thị trường, bác đã trồng khoai tây trên phần diện tích gấp đôi diện tích trồng ngô. Tổng chi phí trồng ba loại cây trên là 45,25 triệu đồng. Hỏi diện tích trồng mỗi loại cây là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi diện tích trồng ngô, khoai tây, đậu tương lần lượt là x, y, z (ha).

Theo đề bài, ta có:

– Có tổng cộng 12 ha đất canh tác, suy ra x + y + z =12 (1).

– Diện tích trồng khoai tây gấp đôi diện tích trồng ngô, suy ra y = 2x hay 2x – y = 0 (2).

– Tổng chi phí trồng ba loại cây trên là 45,25 triệu đồng, suy ra 4x + 3y + 4,5z = 45,25 (3).

Từ (1), (2) và (3) ta có hệ phương trình: x+y+z=122xy=04x+3y+4,5z=45,25.

Giải hệ này ta được x = 2,5; y = 5; z = 4,5.

Vậy diện tích trồng ngô, khoai tây, đậu tương lần lượt là 2,5 ha; 5 ha và 4,5 ha.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) x+y+z=6x+2y+3z=143x2yz=4x+y+z=6y2z=85y+4z=22x+y+z=6y2z=86z=18x+y+z=6y2.3=8z=3

x+2+3=6y=2z=3x=1y=2z=3.

 

Vậy hệ phương trình đã cho có nghiệm là (x; y; z) = (1; 2; 3).

b) 2x2y+z=63x+2y+5z=77x+3y6z=12x2y+z=610y7z=47x+3y6z=12x2y+z=610y7z=420y+19z=402x2y+z=68y7z=433z=32

2x2y+z=68y7.3233=4z=32332x2178165+3233=6y=178165z=3233x=7955y=178165z=3233.

Vậy hệ phương trình đã cho có nghiệm là (x; y; z) = 7955;178165;3233.

c) 2x+y6z=13x+2y5z=57x+4y17z=72x+y6z=1y8z=77x+4y17z=72x+y6z=1y8z=7y8z=72x+y6z=1y8z=7.

Rút y theo z từ phương trình thứ hai ta được y = 7 – 8z. Rút x theo y và z từ phương trình thứ nhất ta được x = 1y+6z2=178z+6z2=7z3. Vậy hệ đã cho có vô số nghiệm và tập nghiệm của hệ là S = {(7z – 3; 7 – 8z; z) | z }.

d) 5x+2y7z=62x+3y+2z=79x+8y3z=15x+2y7z=611y24z=2322y48z=495x+2y7z=622y48z=4622y48z=49.

Từ hai phương trình cuối, suy ra –46 = 49, điều này vô lí.

Vậy hệ ban đầu vô nghiệm.

Lời giải

a) Parabol đi qua ba điểm A(2; –1), B(4; 3) và C(–1; 8) nên ta có hệ phương trình:

1=a.22+b.2+c3=a.42+b.4+c8=a.12+b.1+c4a+2b+c=116a+4b+c=3ab+c=1.

Giải hệ này ta được a = 25, b = 25, c = 95.

Vậy phương trình của parabol là y=25x225x95.

b) Parabol nhận đường thẳng x = 52 làm trục đối xứng, suy ra b2a=52 5a + b = 0.

Parabol đi qua hai điểm M(1; 0), N(5; –4), suy ra

0=a.12+b.1+c và 4=a.52+b.5+c

hay a + b + c = 0 và 25a + 5b + c = –4.

Vậy ta có hệ phương trình: 5a+b=0a+b+c=025a+5b+c=4.

Giải hệ này ta được a = –1, b = 5, c = –4.

Vậy phương trình của parabol là y = –x2 + 5x – 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP