Câu hỏi:

11/07/2024 6,477

Bác Việt có 12 ha đất canh tác để trồng ba loại cây: ngô, khoai tây và đậu tương. Chi phí trồng 1 ha ngô là 4 triệu đồng, 1 ha khoai tây là 3 triệu đồng và 1 ha đậu tương là 4,5 triệu đồng. Do nhu cầu thị trường, bác đã trồng khoai tây trên phần diện tích gấp đôi diện tích trồng ngô. Tổng chi phí trồng ba loại cây trên là 45,25 triệu đồng. Hỏi diện tích trồng mỗi loại cây là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi diện tích trồng ngô, khoai tây, đậu tương lần lượt là x, y, z (ha).

Theo đề bài, ta có:

– Có tổng cộng 12 ha đất canh tác, suy ra x + y + z =12 (1).

– Diện tích trồng khoai tây gấp đôi diện tích trồng ngô, suy ra y = 2x hay 2x – y = 0 (2).

– Tổng chi phí trồng ba loại cây trên là 45,25 triệu đồng, suy ra 4x + 3y + 4,5z = 45,25 (3).

Từ (1), (2) và (3) ta có hệ phương trình: x+y+z=122xy=04x+3y+4,5z=45,25.

Giải hệ này ta được x = 2,5; y = 5; z = 4,5.

Vậy diện tích trồng ngô, khoai tây, đậu tương lần lượt là 2,5 ha; 5 ha và 4,5 ha.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) x+y+z=6x+2y+3z=143x2yz=4x+y+z=6y2z=85y+4z=22x+y+z=6y2z=86z=18x+y+z=6y2.3=8z=3

x+2+3=6y=2z=3x=1y=2z=3.

 

Vậy hệ phương trình đã cho có nghiệm là (x; y; z) = (1; 2; 3).

b) 2x2y+z=63x+2y+5z=77x+3y6z=12x2y+z=610y7z=47x+3y6z=12x2y+z=610y7z=420y+19z=402x2y+z=68y7z=433z=32

2x2y+z=68y7.3233=4z=32332x2178165+3233=6y=178165z=3233x=7955y=178165z=3233.

Vậy hệ phương trình đã cho có nghiệm là (x; y; z) = 7955;178165;3233.

c) 2x+y6z=13x+2y5z=57x+4y17z=72x+y6z=1y8z=77x+4y17z=72x+y6z=1y8z=7y8z=72x+y6z=1y8z=7.

Rút y theo z từ phương trình thứ hai ta được y = 7 – 8z. Rút x theo y và z từ phương trình thứ nhất ta được x = 1y+6z2=178z+6z2=7z3. Vậy hệ đã cho có vô số nghiệm và tập nghiệm của hệ là S = {(7z – 3; 7 – 8z; z) | z }.

d) 5x+2y7z=62x+3y+2z=79x+8y3z=15x+2y7z=611y24z=2322y48z=495x+2y7z=622y48z=4622y48z=49.

Từ hai phương trình cuối, suy ra –46 = 49, điều này vô lí.

Vậy hệ ban đầu vô nghiệm.

Lời giải

Gọi số xe loại chở 5 tấn, chở 7 tấn và chở 10 tấn lần lượt là x, y, z.

Theo đề bài, ta có:

– Có tổng cộng 255 tấn gạo, suy ra 5x + 7y + 10z = 255 (1).

– Đoàn xe có 36 chiếc, suy ra x + y + z = 36 (2).

– Tổng số hai loại xe chở 5 tấn và chở 7 tấn nhiều gấp ba lần số xe chở 10 tấn, suy ra (x + y) = 3z hay x + y – 3z = 0 (2).

Từ (1), (2) và (3) ta có hệ phương trình: 5x+7y+10z=255x+y+z=36x+y3z=0.

Giải hệ này ta được x = 12, y = 15, z = 9.

Vậy số xe loại chở 5 tấn, chở 7 tấn và chở 10 tấn lần lượt là 12 xe, 15 xe và 9 xe.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay