Câu hỏi:

12/06/2022 4,091

Giải các hệ phương trình sau:

a) 2x+y3z=3x+y+3z=23x2y+z=1;

b) 4x+y+3z=32x+yz=15x+2y=1;

c) x+2z=22x+yz=14x+y+3z=3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) 2x+y3z=3x+y+3z=23x2y+z=12x+y3z=3y9z=13x2y+z=12x+y3z=3y9z=17y11z=112x+y3z=3y9z=174z=4

2x+y3z=3y9237=1z=2372x+55373237=3y=5537z=237x=2537y=5537z=237.

Vậy nghiệm của hệ đã cho là (x; y; z) = 2537;5537;237.

b) 4x+y+3z=32x+yz=15x+2y=14x+y+3z=3y+5z=53y+15z=194x+y+3z=33y+15z=153y+15z=19.

Từ hai phương trình cuối, suy ra –15 = –19, điều này vô lí. Vậy hệ đã cho vô nghiệm.

c)  x+2z=22x+yz=14x+y+3z=3x+2z=2y+5z=54x+y+3z=3x+2z=2y+5z=5y+5z=5x+2z=2y+5z=5.

Rút y theo z từ phương trình thứ hai của hệ ta được y = 5z + 5. Rút x theo z từ phương trình thứ nhất của hệ ta được x = –2z – 2. Vậy hệ đã cho có vô số nghiệm và tập nghiệm của hệ là S = {(–2z – 2; 5z + 5; z) | z }.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tiền Hà, Lan, Minh phải trả lần lượt là x, y, z (nghìn đồng).

Theo đề bài, ta có:

– Số tiền tổng cộng là 820 nghìn đồng, suy ra x + y + z = 820 (1).

– Số tiền trả cho Lan ít hơn một nửa số tiền trả cho Hà là 5 nghìn đồng, suy ra 12xy=5 hay x – 2y = 10 (2).

– Số tiền trả cho Minh nhiều hơn số tiền trả cho Lan là 210 nghìn đồng, suy ra z – y = 210 hay –y + z = 210 (3).

Từ (1), (2) và (3) ta có hệ phương trình: x+y+z=820x2y=10y+z=210.

Giải hệ này ta được x = 310, y = 150, z = 360.

Vậy Lan phải trả Hà 150 nghìn đồng, Minh phải trả Hà 360 nghìn đồng.

Lời giải

Gọi giá của mỗi chiếc xe hãng X, Y, Z trong năm ngoái lần lượt là x, y, z (tỉ đồng).

Theo đề bài, ta có:

– Năm ngoái, người ta có thể mua ba mẫu xe ôtô của ba hãng X, Y, Z với tổng số tiền là 2,8 tỉ đồng, suy ra x + y + z =2,8 (1).

– Năm nay, do lạm phát, để mua ba chiếc xe đó cần 3,018 tỉ đồng, suy ra 108%x + 105%y + 112%z = 3,018 hay 108x + 105y + 112z = 301,8 (2).

– Trong năm ngoái giá chiếc xe của hãng Y thấp hơn 200 triệu đồng so với giá chiếc xe của hãng X, suy ra x – y = 0,2 (3).

Từ (1), (2) và (3) ta có hệ phương trình: x+y+z=2,8108x+105y+112z=301,8xy=0,2.

Giải hệ này ta được x = 1,2; y = 1; z = 0,6.

Vậy giá của mỗi chiếc xe hãng X, Y, Z trong năm ngoái lần lượt là 1,2; 1 và 0,6 tỉ đồng.