Bài tập Hệ phương trình bậc nhất ba ẩn có đáp án
546 người thi tuần này 4.6 4.1 K lượt thi 16 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
a) Mỗi phương trình của hệ trên có bậc nhất đối với các ẩn x, y, z.
b) Bộ số (x; y; z) = (1; 3;–2) có thoả mãn cả ba phương trình của hệ.
Thử lại:
1 + 3 + (–2) = 2;
1 + 2 . 3 + 3 . (–2) = 1;
2 . 1 + 3 + 3 . (–2) = –1.
c) Bộ số (x; y; z) = (1; 3;–2) không thoả mãn hệ phương trình đã cho. Vì khi thay vào phương trình thứ nhất của hệ ta được 1 + 1 + 2 = 2, đây là đẳng thức sai.
Lời giải
a) Bộ ba số (–3; 2;–1) không là nghiệm của hệ phương trình bậc nhất đã cho.
Vì khi thay bộ số này vào phương trình thứ nhất của hệ ta được (–3) + 2 . 2 – 3 . (–1) = 1, đây là đẳng thức sai.
b) Bộ ba số (–3; 2;–1) có là nghiệm của hệ phương trình bậc nhất đã cho.
Vì khi thay bộ số này vào từng phương trình thì chúng đều có nghiệm đúng:
–(–3) + 2 + (–1) = 4;
2 . (–3) + 2 – 3 . (–1) = –1;
3 . (–3) – 2 . (–1) = –7.
Lời giải
+) Từ phương trình cuối ta tính được z = 2.
+) Thay z = 2 vào phương trình thứ hai ta được y + 2 = 7, suy ra y = 5.
+) Thay y = 5 và z = 2 vào phương trình đầu ta được x + 5 – 2 . 2 = 3, suy ra x = 2.
Lời giải
+) Từ phương trình đầu ta tính được x =
+) Thay x = vào phương trình thứ hai ta được + y = 2, suy ra y =
+) Thay x = và y = vào phương trình thứ ba ta được suy ra z = –3.
Vậy nghiệm của hệ đã cho là (x; y; z) =
Lời giải
a) Cộng phương trình thứ hai với phương trình thứ nhất, ta được:
(x + y – 2z) + (–x + y + 6z) = 3 = 13 2y + 4z = 16 y + 2z = 8.
b) Nhân phương trình thứ nhất với –2 và cộng với phương trình thứ ba, ta được:
–2(x + y – 2z) + (2x + y – 9z) = –2 . 3 + (–5) –y – 5z = –11 y + 5z = 11.
Hệ mới nhận được sau hai bước trên là:
c) Lấy phương trình thứ hai trừ phương trình thứ ba, ta được:
(y + 2z) – (y + 5z) = 8 – 11 –3z = –3 z = 1.
Hệ tam giác nhận được là:
d)
Vậy nghiệm của hệ đã cho là (x; y; z) = (–1; 6; 1).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.