Câu hỏi:

12/07/2024 5,275

Hệ nào dưới đây là hệ phương trình bậc nhất ba ẩn? Kiểm tra xem bộ số (2; 0;–1) có phải là nghiệm của hệ phương trình bậc nhất ba ẩn đó không.

a) x2z=42x+yz=53x+2y=6;

b) x2y+3z=72xy2+z=2x+2y=1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đây là hệ phương trình bậc nhất ba ẩn.

Bộ ba số (2; 0;–1) có là nghiệm của hệ phương trình bậc nhất đã cho.

Vì khi thay bộ số này vào từng phương trình thì chúng đều có nghiệm đúng:

2 – 2 . (–1) = 4;

2 . 2 + 0 – (–1) = 5;

–3 . 2 + 2 . 0 = –6.

b) Đây không là hệ phương trình bậc nhất ba ẩn vì phương trình thứ hai của hệ có chứa y2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tiền Hà, Lan, Minh phải trả lần lượt là x, y, z (nghìn đồng).

Theo đề bài, ta có:

– Số tiền tổng cộng là 820 nghìn đồng, suy ra x + y + z = 820 (1).

– Số tiền trả cho Lan ít hơn một nửa số tiền trả cho Hà là 5 nghìn đồng, suy ra 12xy=5 hay x – 2y = 10 (2).

– Số tiền trả cho Minh nhiều hơn số tiền trả cho Lan là 210 nghìn đồng, suy ra z – y = 210 hay –y + z = 210 (3).

Từ (1), (2) và (3) ta có hệ phương trình: x+y+z=820x2y=10y+z=210.

Giải hệ này ta được x = 310, y = 150, z = 360.

Vậy Lan phải trả Hà 150 nghìn đồng, Minh phải trả Hà 360 nghìn đồng.

Lời giải

Gọi giá của mỗi chiếc xe hãng X, Y, Z trong năm ngoái lần lượt là x, y, z (tỉ đồng).

Theo đề bài, ta có:

– Năm ngoái, người ta có thể mua ba mẫu xe ôtô của ba hãng X, Y, Z với tổng số tiền là 2,8 tỉ đồng, suy ra x + y + z =2,8 (1).

– Năm nay, do lạm phát, để mua ba chiếc xe đó cần 3,018 tỉ đồng, suy ra 108%x + 105%y + 112%z = 3,018 hay 108x + 105y + 112z = 301,8 (2).

– Trong năm ngoái giá chiếc xe của hãng Y thấp hơn 200 triệu đồng so với giá chiếc xe của hãng X, suy ra x – y = 0,2 (3).

Từ (1), (2) và (3) ta có hệ phương trình: x+y+z=2,8108x+105y+112z=301,8xy=0,2.

Giải hệ này ta được x = 1,2; y = 1; z = 0,6.

Vậy giá của mỗi chiếc xe hãng X, Y, Z trong năm ngoái lần lượt là 1,2; 1 và 0,6 tỉ đồng.