Câu hỏi:
12/07/2024 3,465
Cho hệ ba phương trình bậc nhất ba ẩn sau
.
a) Giả sử (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình trên. Chứng minh rằng cũng là một nghiệm của hệ.
b) Sử dụng kết quả của câu a) chứng minh rằng, nếu hệ phương trình bậc nhất ba ẩn có hai nghiệm phân biệt thì nó sẽ có vô số nghiệm.
Cho hệ ba phương trình bậc nhất ba ẩn sau
.
a) Giả sử (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình trên. Chứng minh rằng cũng là một nghiệm của hệ.
b) Sử dụng kết quả của câu a) chứng minh rằng, nếu hệ phương trình bậc nhất ba ẩn có hai nghiệm phân biệt thì nó sẽ có vô số nghiệm.
Câu hỏi trong đề: Bài tập Hệ phương trình bậc nhất ba ẩn có đáp án !!
Quảng cáo
Trả lời:
a) Vì (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình nên:
và
Mặt khác do (x0; y0; z0) và (x1; y1; z1) phân biệt nên cũng đôi một phân biệt với (x0; y0; z0) và (x1; y1; z1).
Do đó cũng là một nghiệm của hệ.
b) Xét hệ phương trình bậc nhất ba ẩn .
có (x0; y0; z0) và (x1; y1; z1) là hai nghiệm phân biệt của hệ phương trình này.
Giả sử hệ chỉ có n nghiệm đôi một phân biệt (x0; y0; z0), (x1; y1; z1), ..., (xn; yn; zn).
Ta chọn ra hai nghiệm (xi; yi; zi) và (xj; yj; zj) thoả mãn xi và xj là hai số nhỏ nhất trong tập hợp A = {x0; x1; ...; xn}.
Khi đó, áp dụng câu a) ta được cũng là một nghiệm của hệ.
Mặt khác khác xi, xj và < max{xi, xj} nên không trùng với phần tử nào trong tập hợp A. Do đó hệ đã cho có n + 1 nghiệm phân biệt (vô lí).
Vậy hệ này có vô số nghiệm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số tiền Hà, Lan, Minh phải trả lần lượt là x, y, z (nghìn đồng).
Theo đề bài, ta có:
– Số tiền tổng cộng là 820 nghìn đồng, suy ra x + y + z = 820 (1).
– Số tiền trả cho Lan ít hơn một nửa số tiền trả cho Hà là 5 nghìn đồng, suy ra hay x – 2y = 10 (2).
– Số tiền trả cho Minh nhiều hơn số tiền trả cho Lan là 210 nghìn đồng, suy ra z – y = 210 hay –y + z = 210 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được x = 310, y = 150, z = 360.
Vậy Lan phải trả Hà 150 nghìn đồng, Minh phải trả Hà 360 nghìn đồng.
Lời giải
Gọi giá của mỗi chiếc xe hãng X, Y, Z trong năm ngoái lần lượt là x, y, z (tỉ đồng).
Theo đề bài, ta có:
– Năm ngoái, người ta có thể mua ba mẫu xe ôtô của ba hãng X, Y, Z với tổng số tiền là 2,8 tỉ đồng, suy ra x + y + z =2,8 (1).
– Năm nay, do lạm phát, để mua ba chiếc xe đó cần 3,018 tỉ đồng, suy ra 108%x + 105%y + 112%z = 3,018 hay 108x + 105y + 112z = 301,8 (2).
– Trong năm ngoái giá chiếc xe của hãng Y thấp hơn 200 triệu đồng so với giá chiếc xe của hãng X, suy ra x – y = 0,2 (3).
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được x = 1,2; y = 1; z = 0,6.
Vậy giá của mỗi chiếc xe hãng X, Y, Z trong năm ngoái lần lượt là 1,2; 1 và 0,6 tỉ đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.