Câu hỏi:
09/01/2020 65,798Có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam và 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện một học sinh nữ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn C
Số phần tử của không gian mẫu: .
Gọi biến cố : “Xếp 10 học sinh vào 10 ghế sao cho mỗi học sinh nam đều ngồi đối diện một học sinh nữ”.
Giả sử đánh vị trí ngồi như bảng sau:
Cách 1: Xếp vị trí có 10 cách. Mỗi cách xếp vị trí sẽ có 5 cách xếp vị trí .
Mỗi cách xếp vị trí , có 8 cách xếp vị trí , tương ứng sẽ có 4 cách xếp vị trí .
Cứ làm như vậy thì số cách xếp thỏa mãn biến cố là:
Cách 2: Đánh số cặp ghế đối diện nhau là C1, C2, C3, C4, C5
Xếp bạn nam vào 5 cặp ghế có 5! cách.
Ở mỗi cặp ghế, ta có 2 cách xếp một cặp nam, nữ ngồi đối diện.
Số phần tử của A là:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ một hộp chứa 11 quả cầu màu đỏ và 4 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được 3 quả cầu màu xanh bằng
Câu 2:
Có 8 người khách bước ngẫu nhiên vào một cửa hàng có 3 quầy. Tính xác suất để 3 người cùng đến quầy thứ nhất.
Câu 3:
Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 7 quả cầu đỏ và 5 quả cầu màu xanh, hộp thứ hai chứa 6 quả cầu đỏ và 4 quả cầu màu xanh. Lấy ngẫu nhiên từ một hộp 1 quả cầu. Xác suất sao cho hai quả lấy ra cùng màu đỏ.
Câu 4:
Cho tập hợp S = {1,2,3...,17} gồm 17 số nguyên dương đầu tiên. Chọn ngẫu nhiên 3 phần tử của tập S. Tính xác suất để tập hợp con chọn được có tổng các phần tử chia hết cho 3.
Câu 5:
Một hộp đựng 15 quả cầu trong đó có 6 quả màu đỏ, 5 quả màu xanh, 4 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu trong 15 quả cầu đó. Tính xác suất để 6 quả lấy được có đủ ba màu.
Câu 6:
Một đoàn tàu gồm ba toa đỗ sân ga. Có 5 hành khách lên tàu. Mỗi hành khách độc lập với nhau. Chọn ngẫu nhiên một toa. Tìm xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu.
về câu hỏi!