Câu hỏi:

11/07/2024 5,188

Bà Hà có 1 tỉ đồng để đầu tư vào cổ phiếu, trái phiếu và gửi tiết kiệm ngân hàng. Cổ phiếu sinh lợi nhuận 12%/năm, trong khi trái phiếu và gửi tiết kiệm ngân hàng cho lãi suất lần lượt là 8%/năm và 4%/năm. Bà Hà đã quy định rằng số tiền gửi tiết kiệm ngân hàng phải bằng tổng của 20% số tiền đầu tư vào cổ phiếu và 10% số tiền đầu tư vào trái phiếu. Bà Hà nên phân bổ nguồn vốn của mình như thế nào để nhận được 100 triệu đồng tiền lãi từ các khoản đầu tư đó trong năm đầu tiên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi số tiền bác Hà nên đầu tư vào cổ phiếu, trái phiếu và gửi tiết kiệm ngân hàng lần lượt là x, y, z (triệu đồng).

Theo đề bài ta có:

– Bác Hà có 1 tỉ đồng, suy ra x + y + z = 1000 (1).

– Số tiền gửi tiết kiệm ngân hàng bằng tổng của 20% số tiền đầu tư vào cổ phiếu và 10% số tiền đầu tư vào trái phiếu, suy ra z = 20%x + 10%y hay 2x + y – 10z = 0 (2).

– Số tiền lãi là 100 triệu đồng, suy ra 12%x + 8%y + 4%z = 100 hay 3x + 2y + z = 2500 (3).

Từ (1), (2) và (3) ta có hệ phương trình:{x+y+z=10002x+y10z=03x+2y+z=2500.

Giải hệ này ta được x = 650, y = 200, z = 150.

Vậy số tiền bác Hà nên đầu tư vào cổ phiếu, trái phiếu và gửi tiết kiệm ngân hàng lần lượt là 650 triệu đồng, 200 triệu đồng, 150 triệu đồng.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số bạn trong mỗi nhóm A, B, C lần lượt là x, y, z.

Theo đề bài ta có: x + y + z = 100 (1).

– Số bạn ở nhóm A sau khi chuyển là: x – 13x+13z;

– Số bạn ở nhóm B sau khi chuyển là: y – 12y+13x+13z;

Vì số bạn ở mỗi nhóm là không đổi qua hai trò chơi nên ta có:{x13x+13z=xy12y+13x+13z=y{xz=0                    (2)2x3y+2z=0   (3).

Từ (1), (2) và (3) ta có hệ phương trình: {x+y+z=100xz=02x3y+2z=0.

Giải hệ này ta được x = 30, y = 40, z = 30.

Vậy số bạn trong mỗi nhóm A, B, C lần lượt là 30, 40, 30.

Lời giải

Hướng dẫn giải

Gọi số lần nguyên phân của mỗi tế bào A, B, C lần lượt là x, y, z.

Theo đề bài ta có:

– Sau nguyên phân tạo ra 168 tế bào con, suy ra 2x + 2y + 2z = 168 (1).

– Số tế bào A tạo ra gấp bốn lần số tế bào B tạo ra, suy ra 2x = 4 . 2y hay 2x – 4 . 2y = 0 (2).

– Số lần nguyên phân của tế bào C nhiều hơn số lần nguyên phân của tế bào B là bốn lần, suy ra y + 4 = z, suy ra 2y + 4 = 2z hay 16 . 2y – 2z = 0 (3).

Đặt a = 2x, b = 2y, c = 2z thì từ (1), (2) và (3) ta có hệ phương trình:{a+b+c=168a4b=016bc=0.

Giải hệ này ta được a = 32, b = 8, c = 128.

Suy ra x = 5, y = 3, z = 7.

Vậy số lần nguyên phân của mỗi tế bào A, B, C lần lượt là 5, 3, 7.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay