Câu hỏi:

11/07/2024 5,307 Lưu

Bà Hà có 1 tỉ đồng để đầu tư vào cổ phiếu, trái phiếu và gửi tiết kiệm ngân hàng. Cổ phiếu sinh lợi nhuận 12%/năm, trong khi trái phiếu và gửi tiết kiệm ngân hàng cho lãi suất lần lượt là 8%/năm và 4%/năm. Bà Hà đã quy định rằng số tiền gửi tiết kiệm ngân hàng phải bằng tổng của 20% số tiền đầu tư vào cổ phiếu và 10% số tiền đầu tư vào trái phiếu. Bà Hà nên phân bổ nguồn vốn của mình như thế nào để nhận được 100 triệu đồng tiền lãi từ các khoản đầu tư đó trong năm đầu tiên?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Gọi số tiền bác Hà nên đầu tư vào cổ phiếu, trái phiếu và gửi tiết kiệm ngân hàng lần lượt là x, y, z (triệu đồng).

Theo đề bài ta có:

– Bác Hà có 1 tỉ đồng, suy ra x + y + z = 1000 (1).

– Số tiền gửi tiết kiệm ngân hàng bằng tổng của 20% số tiền đầu tư vào cổ phiếu và 10% số tiền đầu tư vào trái phiếu, suy ra z = 20%x + 10%y hay 2x + y – 10z = 0 (2).

– Số tiền lãi là 100 triệu đồng, suy ra 12%x + 8%y + 4%z = 100 hay 3x + 2y + z = 2500 (3).

Từ (1), (2) và (3) ta có hệ phương trình:{x+y+z=10002x+y10z=03x+2y+z=2500.

Giải hệ này ta được x = 650, y = 200, z = 150.

Vậy số tiền bác Hà nên đầu tư vào cổ phiếu, trái phiếu và gửi tiết kiệm ngân hàng lần lượt là 650 triệu đồng, 200 triệu đồng, 150 triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi số bạn trong mỗi nhóm A, B, C lần lượt là x, y, z.

Theo đề bài ta có: x + y + z = 100 (1).

– Số bạn ở nhóm A sau khi chuyển là: x – 13x+13z;

– Số bạn ở nhóm B sau khi chuyển là: y – 12y+13x+13z;

Vì số bạn ở mỗi nhóm là không đổi qua hai trò chơi nên ta có:{x13x+13z=xy12y+13x+13z=y{xz=0                    (2)2x3y+2z=0   (3).

Từ (1), (2) và (3) ta có hệ phương trình: {x+y+z=100xz=02x3y+2z=0.

Giải hệ này ta được x = 30, y = 40, z = 30.

Vậy số bạn trong mỗi nhóm A, B, C lần lượt là 30, 40, 30.

Lời giải

Hướng dẫn giải

Gọi x, y, z, t lần lượt là bốn số nguyên dương thoả mãn cân bằng phương trình phản ứng hoá học:

xCH4 + yO2 to zCO2 + tH2O.

Số nguyên tử C ở hai vế bằng nhau, ta có x = z (1).

Số nguyên từ H ở hai vế bằng nhau, ta có 4x = 2t hay 2x = t (2).

Số nguyên từ O ở hai vế bằng nhau, ta có 2y = 2z + t (3).

Thay (1) và (2) vào (3) ta được 2y = 2x + 2x hay y = 2x.

Vậy y = 2x, z = x, t = 2x.

Để phương trình có hệ số đơn giản, ta chọn x = 1, khi đó y = 2, z = 1, t = 2.

Vậy phương trình cân bằng phản ứng hoá học là CH4 + 2O2 to CO2 + 2H2O.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP