Trên thị trường có ba loại sản phẩm A, B, C với giá mỗi tấn sản phẩm tương ứng là x, y, z (đơn vị: triệu đồng, x ≥ 0, y ≥ 0, z ≥ 0). Lượng cung và lượng cầu của mỗi sản phẩm được cho trong bảng dưới đây:
Sản phẩm
Lượng cung
Lượng cầu
A
4x – y – z – 5
–2x + y + z + 9
B
–x + 4y – z – 5
x – 2y + z + 3
C
–x – y + 4z – 1
x + y – 2z – 1
Tìm giá bán của mỗi sản phẩm để thị trường cân bằng.
Trên thị trường có ba loại sản phẩm A, B, C với giá mỗi tấn sản phẩm tương ứng là x, y, z (đơn vị: triệu đồng, x ≥ 0, y ≥ 0, z ≥ 0). Lượng cung và lượng cầu của mỗi sản phẩm được cho trong bảng dưới đây:
Sản phẩm |
Lượng cung |
Lượng cầu |
A |
4x – y – z – 5 |
–2x + y + z + 9 |
B |
–x + 4y – z – 5 |
x – 2y + z + 3 |
C |
–x – y + 4z – 1 |
x + y – 2z – 1 |
Tìm giá bán của mỗi sản phẩm để thị trường cân bằng.
Quảng cáo
Trả lời:
Hướng dẫn giải
Thị trường cân bằng khi
Vậy giá mỗi mỗi sản phẩm A, B, C để thị trường cân bằng lần lượt là 4,5 triệu đồng; 3,75 triệu đồng; 2,75 triệu đồng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi số bạn trong mỗi nhóm A, B, C lần lượt là x, y, z.
Theo đề bài ta có: x + y + z = 100 (1).
– Số bạn ở nhóm A sau khi chuyển là: x –
– Số bạn ở nhóm B sau khi chuyển là: y –
Vì số bạn ở mỗi nhóm là không đổi qua hai trò chơi nên ta có:
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được x = 30, y = 40, z = 30.
Vậy số bạn trong mỗi nhóm A, B, C lần lượt là 30, 40, 30.
Lời giải
Hướng dẫn giải
Gọi số lần nguyên phân của mỗi tế bào A, B, C lần lượt là x, y, z.
Theo đề bài ta có:
– Sau nguyên phân tạo ra 168 tế bào con, suy ra 2x + 2y + 2z = 168 (1).
– Số tế bào A tạo ra gấp bốn lần số tế bào B tạo ra, suy ra 2x = 4 . 2y hay 2x – 4 . 2y = 0 (2).
– Số lần nguyên phân của tế bào C nhiều hơn số lần nguyên phân của tế bào B là bốn lần, suy ra y + 4 = z, suy ra 2y + 4 = 2z hay 16 . 2y – 2z = 0 (3).
Đặt a = 2x, b = 2y, c = 2z thì từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ này ta được a = 32, b = 8, c = 128.
Suy ra x = 5, y = 3, z = 7.
Vậy số lần nguyên phân của mỗi tế bào A, B, C lần lượt là 5, 3, 7.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.