Câu hỏi:
12/07/2024 19,271
Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right):\frac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\).
1) Tìm điều kiện xác định và rút gọn biểu thức P?
2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?
3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?
Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right):\frac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\).
1) Tìm điều kiện xác định và rút gọn biểu thức P?
2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?
3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?
Câu hỏi trong đề: Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
1) Điều kiện xác định: \(\left\{ \begin{array}{l}x - \sqrt x \ne 0\\\sqrt x - 1 \ne 0\\x \ge 0\\\sqrt x + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\\x \ge 0\\\sqrt x \ne - 1\end{array} \right. \Leftrightarrow 0 < x \ne 1\)
Ta có: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right).\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}}\)
\( = \left[ {\frac{1}{{x - \sqrt x }} + \frac{{\sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right].\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}}\)
\( = \frac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x - 1} \right)}}.\frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x + 1}} = \frac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{\sqrt x \left( {\sqrt x - 1} \right)}} = \frac{{\sqrt x - 1}}{{\sqrt x }}\)
Vậy \(P = \frac{{\sqrt x - 1}}{{\sqrt x }}\).
Cách 2: Đặt \(a = \sqrt x \) \(\left( {a \ge 0} \right)\)
Ta có: \(P = \left( {\frac{1}{{{a^2} - a}} + \frac{1}{{a - 1}}} \right):\frac{{a + 1}}{{{{\left( {a - 1} \right)}^2}}} = \left[ {\frac{1}{{a\left( {a - 1} \right)}} + \frac{1}{{a - 1}}} \right].\frac{{{{\left( {a - 1} \right)}^2}}}{{a + 1}}\)
\( = \left[ {\frac{{1 + a}}{{a\left( {a - 1} \right)}}} \right].\frac{{{{\left( {a - 1} \right)}^2}}}{{a + 1}} = \frac{{a - 1}}{a} = \frac{{\sqrt x - 1}}{{\sqrt x }}\).
Nhận xét: Bài toán tìm điều kiện và rút gọn áp dụng quy tắc tìm điều kiện và các phương pháp phân tích đa thức thành nhân tử.
2) Với \(P = \frac{1}{3} \Leftrightarrow \frac{{\sqrt x - 1}}{{\sqrt x }} = \frac{1}{3}\)
\( \Leftrightarrow 3\left( {\sqrt x - 1} \right) = \sqrt x \Leftrightarrow 2\sqrt x = 3 \Leftrightarrow x = \frac{9}{4}\) (thõa mãn).
Nhận xét: Bài toán tìm giá trị của biến để biểu thức nhận một giá trị cho trước.
3) Ta có \(Q = P - 9\sqrt x = \frac{{\sqrt x - 1}}{{\sqrt x }} - 9\sqrt x = 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right)\)
Áp dụng bất đẳng thức Cô-si cho 2 số không âm \(\frac{1}{{\sqrt x }}\) và \(9\sqrt x \), tạ có:
\(\frac{1}{{\sqrt x }} + 9\sqrt x \ge 2\sqrt {\frac{1}{{\sqrt x }}.9\sqrt x } = 2\sqrt 9 = 6\).
\( \Rightarrow Q \le 1 - 6 = - 5\)
Dấu " = " xảy ra khi \(\frac{1}{{\sqrt x }} = 9\sqrt x \Leftrightarrow 1 = 9x \Leftrightarrow x = \frac{1}{9}\)
Vậy \(\max P = - 5\) khi \(x = \frac{1}{9}\).
Nhận xét: Bài toán tìm cực trị của biểu thức.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
1) Ta có \(\widehat {AIM} = \widehat {AKM} = 90^\circ \left( {gt} \right)\), suy ra tứ giác AIMK nội tiếp đường tròn đường kính AM.
Nhận xét: Bài toán chứng minh tứ giác nội tiếp bằng cách chứng minh hai đỉnh cùng nhìn cạnh đối diện dưới góc \(90^\circ \).
2) Tứ giác CPMK có \(\widehat {MPC} = \widehat {MKC} = 90^\circ \) (gt). Do đó CPMK là tứ giác nội tiếp \( \Rightarrow \widehat {MPK} = \widehat {MCK}\)(1). Vì KC là tiếp tuyến của \(\left( O \right)\) nên ta có: \(\widehat {MCK} = \widehat {MBC}\) (cùng chắn ) (2).
Từ (l), (2) \( \Rightarrow \widehat {MPK} = \widehat {MBC}\) (3).
Nhận xét: Bài toán chứng minh hai góc bằng nhau bằng cách sử dụng tính chất bắc cầu.
3) Chứng minh tương tự câu b ta có BPMI là tứ giác nội tiếp.
Suy ra: \(\widehat {MIP} = \widehat {MBP}\) (4). Từ (3) (4) \( \Rightarrow \widehat {MPK} = \widehat {MIP}\)
Tương tự ta chứng minh được \(\widehat {MKP} = \widehat {MPI}\).
Suy ra: \(\Delta MPK\) đồng dạng với \(\Delta MIP\)
\( \Rightarrow \frac{{MP}}{{MK}} = \frac{{MI}}{{MP}} \Rightarrow MI.MK = M{P^2} \Rightarrow MI.MK.MP = M{P^3}\)
Do đó \(MI.MK.MP\) lớn nhất khi và chỉ khi MP lớn nhất.
Gọi H là hình chiếu của O trên BC, suy ra OH là hằng số (do BC cố định).
Lại có: \(MP + OH \le OM = R \Rightarrow MP \le R - OH\). Do đó MP lớn nhất bằng \(R - OH\) khi và chỉ khi \(O,H,M\) thẳng hàng hay M nằm chính giữa cung nhỏ BC.
Suy ra \(max\,MI.MK.MP = {\left( {R - OH} \right)^3} \Leftrightarrow M\) nằm chính giữa cung nhỏ BC.
Lời giải
Phương trình có hai nghiệm là \(x = - 1\) và \(x = 1\), thay vào phương trình ta được hệ
\(\left\{ \begin{array}{l} - 1 + a - b + c = 0\\1 + a + b + c = 0\end{array} \right.\)
Trừ hai phương trình trên, ta được: \( - 2 - 2b = 0 \Leftrightarrow b = - 1\)
Cộng hai phương trình trên, ta được: \(a + c = 0 \Leftrightarrow c = - a\)
Phương trình trở thành: \[{x^3} + a{x^2} - x - a = 0\]
\( \Leftrightarrow {x^2}\left( {x + a} \right) - \left( {x + a} \right) \Leftrightarrow \left( {x + a} \right)\left( {{x^2} - 1} \right) = 0\)
Theo giải thiết, phương trình có tập nghiệm là \(S = \left\{ { - 1;1} \right\}\), khi đó phương trình \(x + a = 0\) phải có nghiệm là \( - 1\) hoặc 1, suy ra. \(a = 1\) hoặc \(a = - 1\).
Vậy các số a; b; c cần tìm là \(a = 1;b = - 1;c = - 1\) hoặc \(a = - 1;b = - 1;c = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.