Câu hỏi:
11/07/2024 12,279Từ một điểm A nằm ngoài đường tròn \(\left( {O:R} \right)\) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B,C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ \(MI \bot AB,\,\,MK \bot AC\) \(\left( {I \in AB,\,\,K \in AC} \right)\)
1) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.
2) Vẽ \(MP \bot BC\) \(\left( {P \in BC} \right)\). Chứng minh: \(\widehat {MPK} = \widehat {MBC}\).
3) Xác định vị trí của điểm M trên cung nhỏ BC để tích \[MI.MK.MP\] đạt giá trị lớn nhất.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
1) Ta có \(\widehat {AIM} = \widehat {AKM} = 90^\circ \left( {gt} \right)\), suy ra tứ giác AIMK nội tiếp đường tròn đường kính AM.
Nhận xét: Bài toán chứng minh tứ giác nội tiếp bằng cách chứng minh hai đỉnh cùng nhìn cạnh đối diện dưới góc \(90^\circ \).
2) Tứ giác CPMK có \(\widehat {MPC} = \widehat {MKC} = 90^\circ \) (gt). Do đó CPMK là tứ giác nội tiếp \( \Rightarrow \widehat {MPK} = \widehat {MCK}\)(1). Vì KC là tiếp tuyến của \(\left( O \right)\) nên ta có: \(\widehat {MCK} = \widehat {MBC}\) (cùng chắn ) (2).
Từ (l), (2) \( \Rightarrow \widehat {MPK} = \widehat {MBC}\) (3).
Nhận xét: Bài toán chứng minh hai góc bằng nhau bằng cách sử dụng tính chất bắc cầu.
3) Chứng minh tương tự câu b ta có BPMI là tứ giác nội tiếp.
Suy ra: \(\widehat {MIP} = \widehat {MBP}\) (4). Từ (3) (4) \( \Rightarrow \widehat {MPK} = \widehat {MIP}\)
Tương tự ta chứng minh được \(\widehat {MKP} = \widehat {MPI}\).
Suy ra: \(\Delta MPK\) đồng dạng với \(\Delta MIP\)
\( \Rightarrow \frac{{MP}}{{MK}} = \frac{{MI}}{{MP}} \Rightarrow MI.MK = M{P^2} \Rightarrow MI.MK.MP = M{P^3}\)
Do đó \(MI.MK.MP\) lớn nhất khi và chỉ khi MP lớn nhất.
Gọi H là hình chiếu của O trên BC, suy ra OH là hằng số (do BC cố định).
Lại có: \(MP + OH \le OM = R \Rightarrow MP \le R - OH\). Do đó MP lớn nhất bằng \(R - OH\) khi và chỉ khi \(O,H,M\) thẳng hàng hay M nằm chính giữa cung nhỏ BC.
Suy ra \(max\,MI.MK.MP = {\left( {R - OH} \right)^3} \Leftrightarrow M\) nằm chính giữa cung nhỏ BC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right):\frac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\).
1) Tìm điều kiện xác định và rút gọn biểu thức P?
2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?
3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?
Câu 2:
Tìm \[a;{\rm{ }}b;{\rm{ }}c\] biết rằng phương trình: \({x^3} + a{x^2} + bx + c = 0\) có tập nghiệm là \(S = \left\{ { - 1;1} \right\}\)?
Câu 3:
1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.
Cho tam giác ABC vuông tại A, có \(AB = 8cm,\,\,AC = 6cm\). M là một điểm trên AB. Qua M kẻ các đường thẳng song song với AC và BC lần lượt cắt BC và AC tại D và N. Hãy xác định điểm M để diện tích của hình bình hành MNCD bằng \(\frac{3}{8}\) diện tích của tam giác ABC?
2) Cho hàm số \(y = mx + 1\) (1)
a) Tìm \(m\) để đồ thị hàm số (1) đi qua điểm \(A\left( {1;4} \right)\) . Với giá trị \(m\) vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên \(\mathbb{R}\)?
b) Tìm \(m\) để đồ thị hàm số (1) song song với đường thẳng \(\left( d \right):x + y + 3 = 0\).
Câu 4:
1) Giải hệ phương trình \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3x - 2y + 2 = 0\end{array} \right.\)
2) Giải phương trình: \(\sqrt {2{x^2} + 3x - 5} = 2x - 2\).
3) Cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\). Tìm \(m\) để phương trình có nghiệm duy nhất?
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!