Câu hỏi:
12/07/2024 4981) Giải hệ phương trình \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3x - 2y + 2 = 0\end{array} \right.\)
2) Giải phương trình: \(\sqrt {2{x^2} + 3x - 5} = 2x - 2\).
3) Cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\). Tìm \(m\) để phương trình có nghiệm duy nhất?
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
1) Hệ phương trình tương đương với: \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3\left( {2 + z} \right) - 2\left( {2 + 3z} \right) + z = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\ - 8z - 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = - 1\\z = - 1\end{array} \right.\)
Vậy hệ phương trình có nghiệm: \(\left( {x;y;z} \right) = \left( {1; - 1; - 1} \right)\).
2) Phương trình tương đương với: \(\left\{ \begin{array}{l}2x - 2 \ge 0\\2{x^2} + 3x - 5 = {\left( {2x - 2} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\2{x^2} + 3x - 5 = 4{x^2} - 8x + 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\2{x^2} - 11x + 9 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left( {x - 1} \right)\left( {2x - 9} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left[ \begin{array}{l}x = 1\\x = \frac{9}{2}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{9}{2}\end{array} \right.\)
Vậy phương trình có nghiệm: \(x = 1;x = \frac{9}{2}\).
3)
+ Xét \(m - 1 = 0 \Leftrightarrow m = 1\), phương trình trở thành: \( - 6x + 2 = 0 \Leftrightarrow x = \frac{1}{3}\)
Do đó \(m = 1\) thỏa mãn.
+ Xét \(m - 1 \ne 0 \Leftrightarrow m \ne 1\) (*).
Để phương trình có nghiệm duy nhất thì \(\Delta ' = 0\)
\( \Leftrightarrow {\left[ { - \left( {m + 2} \right)} \right]^2} - \left( {m - 1} \right)\left( {m + 1} \right) = 0 \Leftrightarrow {\left( {m + 2} \right)^2} - \left( {{m^2} - 1} \right) = 0\)
\( \Leftrightarrow 4m + 5 = 0 \Leftrightarrow m = - \frac{5}{4}\) (thỏa mãn điều kiện (*))
Kết luận: \(m = 1\) hoặc \(m = - \frac{5}{4}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x - 1}}} \right):\frac{{\sqrt x + 1}}{{{{\left( {\sqrt x - 1} \right)}^2}}}\).
1) Tìm điều kiện xác định và rút gọn biểu thức P?
2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?
3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?
Câu 2:
Từ một điểm A nằm ngoài đường tròn \(\left( {O:R} \right)\) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B,C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ \(MI \bot AB,\,\,MK \bot AC\) \(\left( {I \in AB,\,\,K \in AC} \right)\)
1) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.
2) Vẽ \(MP \bot BC\) \(\left( {P \in BC} \right)\). Chứng minh: \(\widehat {MPK} = \widehat {MBC}\).
3) Xác định vị trí của điểm M trên cung nhỏ BC để tích \[MI.MK.MP\] đạt giá trị lớn nhất.
Câu 3:
Tìm \[a;{\rm{ }}b;{\rm{ }}c\] biết rằng phương trình: \({x^3} + a{x^2} + bx + c = 0\) có tập nghiệm là \(S = \left\{ { - 1;1} \right\}\)?
Câu 4:
1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.
Cho tam giác ABC vuông tại A, có \(AB = 8cm,\,\,AC = 6cm\). M là một điểm trên AB. Qua M kẻ các đường thẳng song song với AC và BC lần lượt cắt BC và AC tại D và N. Hãy xác định điểm M để diện tích của hình bình hành MNCD bằng \(\frac{3}{8}\) diện tích của tam giác ABC?
2) Cho hàm số \(y = mx + 1\) (1)
a) Tìm \(m\) để đồ thị hàm số (1) đi qua điểm \(A\left( {1;4} \right)\) . Với giá trị \(m\) vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên \(\mathbb{R}\)?
b) Tìm \(m\) để đồ thị hàm số (1) song song với đường thẳng \(\left( d \right):x + y + 3 = 0\).
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 06
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 04
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 05
về câu hỏi!