Câu hỏi:

12/07/2024 498

1) Giải hệ phương trình \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3x - 2y + 2 = 0\end{array} \right.\)

2) Giải phương trình: \(\sqrt {2{x^2} + 3x - 5}  = 2x - 2\).

3) Cho phương trình \(\left( {m - 1} \right){x^2} - 2\left( {m + 2} \right)x + m + 1 = 0\). Tìm \(m\) để phương trình có nghiệm duy nhất?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Hệ phương trình tương đương với: \(\left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\z - 3\left( {2 + z} \right) - 2\left( {2 + 3z} \right) + z = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 2 + z\\y = 2 + 3z\\ - 8z - 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y =  - 1\\z =  - 1\end{array} \right.\)

Vậy hệ phương trình có nghiệm: \(\left( {x;y;z} \right) = \left( {1; - 1; - 1} \right)\).

2) Phương trình tương đương với: \(\left\{ \begin{array}{l}2x - 2 \ge 0\\2{x^2} + 3x - 5 = {\left( {2x - 2} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\2{x^2} + 3x - 5 = 4{x^2} - 8x + 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\2{x^2} - 11x + 9 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left( {x - 1} \right)\left( {2x - 9} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left[ \begin{array}{l}x = 1\\x = \frac{9}{2}\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \frac{9}{2}\end{array} \right.\)

Vậy phương trình có nghiệm: \(x = 1;x = \frac{9}{2}\).

3)

+ Xét \(m - 1 = 0 \Leftrightarrow m = 1\), phương trình trở thành: \( - 6x + 2 = 0 \Leftrightarrow x = \frac{1}{3}\)

Do đó \(m = 1\) thỏa mãn.

+ Xét \(m - 1 \ne 0 \Leftrightarrow m \ne 1\) (*).

Để phương trình có nghiệm duy nhất thì \(\Delta ' = 0\)

\( \Leftrightarrow {\left[ { - \left( {m + 2} \right)} \right]^2} - \left( {m - 1} \right)\left( {m + 1} \right) = 0 \Leftrightarrow {\left( {m + 2} \right)^2} - \left( {{m^2} - 1} \right) = 0\)

\( \Leftrightarrow 4m + 5 = 0 \Leftrightarrow m =  - \frac{5}{4}\)  (thỏa mãn điều kiện (*))

Kết luận: \(m = 1\) hoặc \(m =  - \frac{5}{4}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho biểu thức: \(P = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}\).

1) Tìm điều kiện xác định và rút gọn biểu thức P?

2) Tìm tất cả các giá trị của x để \(P = \frac{1}{3}\)?

3) Tìm giá trị lớn nhất của biểu thức \(Q = A - 9\sqrt x \)?

Xem đáp án » 12/07/2024 15,126

Câu 2:

Từ một điểm A nằm ngoài đường tròn \(\left( {O:R} \right)\) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B,C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ \(MI \bot AB,\,\,MK \bot AC\) \(\left( {I \in AB,\,\,K \in AC} \right)\)

1) Chứng minh: AIMK là tứ giác nội tiếp đường tròn.

2) Vẽ \(MP \bot BC\) \(\left( {P \in BC} \right)\). Chứng minh: \(\widehat {MPK} = \widehat {MBC}\).

3) Xác định vị trí của điểm M trên cung nhỏ BC để tích \[MI.MK.MP\] đạt giá trị lớn nhất.

Xem đáp án » 11/07/2024 12,282

Câu 3:

Tìm \[a;{\rm{ }}b;{\rm{ }}c\] biết rằng phương trình: \({x^3} + a{x^2} + bx + c = 0\) có tập nghiệm là \(S = \left\{ { - 1;1} \right\}\)?

Xem đáp án » 11/07/2024 1,514

Câu 4:

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.

Cho tam giác ABC vuông tại A, có \(AB = 8cm,\,\,AC = 6cm\). M là một điểm trên AB. Qua M kẻ các đường thẳng song song với AC và BC lần lượt cắt BC và AC tại D và N. Hãy xác định điểm M để diện tích của hình bình hành MNCD bằng \(\frac{3}{8}\) diện tích của tam giác ABC?

2) Cho hàm số \(y = mx + 1\) (1)

a) Tìm \(m\) để đồ thị hàm số (1) đi qua điểm \(A\left( {1;4} \right)\) . Với giá trị \(m\) vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên \(\mathbb{R}\)?

b) Tìm \(m\) để đồ thị hàm số (1) song song với đường thẳng \(\left( d \right):x + y + 3 = 0\).

Xem đáp án » 12/07/2024 694

Bình luận


Bình luận