Câu hỏi:
14/06/2022 437
1) Giải hệ phương trình \[\left\{ \begin{array}{l}{x^2} - xy = 24\\2x - 3y = 1\end{array} \right.\]
2) Giải phương trình \[\frac{{x + 5}}{2} + \frac{{3 - 2x}}{4} = x - \frac{{7 + x}}{6}\]
3) Cho phương trình \[2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0\]. Không giải phương trình, tìm giá trị của m để phương trình có hai nghiệm phân biệt \[{x_1};{x_2}\] thỏa mãn hệ thức \[3{x_1} - 4{x_2} = 11\]
1) Giải hệ phương trình \[\left\{ \begin{array}{l}{x^2} - xy = 24\\2x - 3y = 1\end{array} \right.\]
2) Giải phương trình \[\frac{{x + 5}}{2} + \frac{{3 - 2x}}{4} = x - \frac{{7 + x}}{6}\]
3) Cho phương trình \[2{x^2} + \left( {2m - 1} \right)x + m - 1 = 0\]. Không giải phương trình, tìm giá trị của m để phương trình có hai nghiệm phân biệt \[{x_1};{x_2}\] thỏa mãn hệ thức \[3{x_1} - 4{x_2} = 11\]
Câu hỏi trong đề: Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
1) Hệ phương trình tương đương với : \[\left\{ \begin{array}{l}{x^2} - \frac{{x\left( {2x - 1} \right)}}{3} = 24\\\frac{{2x - 1}}{3} = y\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + x = 72\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + 9x = 8x + 72\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x\left( {x + 9} \right) = 8\left( {x + 9} \right)\\\frac{{2x - 1}}{3} = y\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left( {x + 9} \right)\left( {x - 8} \right) = 0\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = - 9\\x = 8\end{array} \right.\\\frac{{2x - 1}}{3} = y\end{array} \right.\left\{ \begin{array}{l}\left[ \begin{array}{l}x = - 9\\x = 8\end{array} \right.\\\frac{{2x - 1}}{3} = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 9\\y = - \frac{{19}}{3}\end{array} \right. \vee \left\{ \begin{array}{l}x = 8\\y = 5\end{array} \right.\]
Vậy hệ phương trình có nghiệm : \[\left( {x;y} \right) = \left( { - 9; - \frac{{19}}{3}} \right),\left( {8;5} \right)\]
2) Phương trình tương đương với : \[\frac{{\left( {x + 5} \right).6}}{{2.6}} + \frac{{\left( {3 - 2x} \right).3}}{{4.3}} = \frac{{12x}}{{12}} - \frac{{\left( {7 + x} \right).2}}{{6.2}}\]
\[ \Leftrightarrow \left( {x + 5} \right).6 + \left( {3 - 2x} \right).3 = 12x - \left( {7 + x} \right).2 \Leftrightarrow 39 = 10x - 14 \Leftrightarrow x = \frac{{53}}{{10}}\]
3) Để phương trình có 2 nghiệm phân biệt \[{x_1},{x_2}\] thì \[\Delta > 0\]
\[ \Leftrightarrow {\left( {2m - 1} \right)^2} - 4.2\left( {m - 1} \right) > 0 \Leftrightarrow {\left( {3 - 2m} \right)^2} > 0 \Leftrightarrow 3 - 2m \ne 0 \Leftrightarrow m \ne \frac{3}{2}\]
Theo định lý Vi-ét, ta có \[\left\{ \begin{array}{l}{x_1} + {x_2} = - \frac{{2m - 1}}{2} = \frac{{1 - 2m}}{2}\\{x_1}.{x_2} = \frac{{m - 1}}{2}\end{array} \right.\]
Kết hợp với yêu cầu đề bài, ta có hệ phương trình \[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{1 - 2m}}{2}\\{x_1}{x_2} = \frac{{m - 1}}{2}\\3{x_1} - 4{x_2} = 11\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\4{x_1} + 4{x_2} = 2\left( {1 - 2m} \right)\\4{x_1}.{x_2} = 2\left( {m - 1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\4{x_1} + \left( {3{x_1} - 11} \right) = 2\left( {1 - 2m} \right)\\{x_1}\left( {3{x_1} - 11} \right) = 2\left( {m - 1} \right)\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\2m = \frac{{13 - 7{x_1}}}{2}\\3{x_1}^2 - 11{x_1} = 2m - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{x_2} = 3{x_1} - 11\\2m = \frac{{13 - 7{x_1}}}{2}\\3{x_1}^2 - 11{x_1} = \frac{{13 - 7{x_1}}}{2} - 2\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}{x_1} = 3\\{x_2} = - \frac{1}{2}\\m = - 2\end{array} \right.\] hoặc \[\left\{ \begin{array}{l}{x_1} = - \frac{1}{2}\\{x_2} = - \frac{{25}}{8}\\m = \frac{{33}}{8}\end{array} \right.\]
Cả hai giá trị m tìm được đều thỏa mãn điều kiện để phương trình có 2 nghiệm
Vậy \[m = - 2\] hoặc \[m = \frac{{33}}{8}\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

1) Ta có \[\widehat {BAC} = 90^\circ \left( {gt} \right)\]
\[\widehat {MDC} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn )
A, D nhìn BC dưới góc \[90^\circ \] , tứ giác ABCD nội tiếp
Vì tứ giác ABCD nội tiếp \[ \Rightarrow \widehat {ADB} = \widehat {ACB}\](cùng chắn cung AB) (1)
Ta có tứ giác DMCS nội tiếp \[ \Rightarrow \widehat {ADB} = \widehat {ACS}\](cùng bù với\[\widehat {MDS}\]) (2)
Từ (1) và (2) \[ \Rightarrow \widehat {BCA} = \widehat {ACS}\]
2) Giả sử BA cắt CD tại K. Ta có \[BD \bot CK,CA \bot BK\]
\[ \Rightarrow M\] là trực tâm \[\Delta KBC\]. Mặt khác \[\widehat {MEC} = 90^\circ \](góc nội tiếp chắn nửa đường tròn)
\[ \Rightarrow K,M,E\] thẳng hàng, hay BA, EM, CD đồng quy tại K
3) Vì tứ giác ABCD nội tiếp \[ \Rightarrow \widehat {DAC} = \widehat {DBC}\](cùng chắn ) (3)
Mặt khác tứ giác BAME nội tiếp \[ \Rightarrow \widehat {MAE} = \widehat {MBE}\](cùng chắn ) (4)
Từ (3) và (4) \[ \Rightarrow \widehat {DAM} = \widehat {MAE}\] hay AM là tia phân giác \[\widehat {DAE}\]
Chứng minh tương tự \[\widehat {ADM} = \widehat {MDE}\] hay DM là tia phân giác \[\widehat {ADE}\]
Vậy M là tâm đường tròn nội tiếp \[\Delta ADE\]
Lời giải
1) Điều kiện xác định : \[\left\{ \begin{array}{l}x \ge 0\\\sqrt x - 1 \ne 0\\x - \sqrt x \ne 0\\\sqrt x + 1 \ne 0\\x - 1 \ne 0\\\frac{1}{{\sqrt x + 1}} + \frac{2}{{x - 1}} \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x \ne 1\end{array} \right. \Leftrightarrow 0 < x \ne 1\]
Ta có : \[P = \left[ {\frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{1}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right]:\left[ {\frac{{\sqrt x - 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}} + \frac{2}{{x - 1}}} \right]\]
\[ = \left[ {\frac{{x - 1}}{{\left( {\sqrt x - 1} \right)\sqrt x }}} \right]\] \[:\left( {\frac{{\sqrt x - 1 + 2}}{{x - 1}}} \right)\]
\[ = \left[ {\frac{{x - 1}}{{\left( {\sqrt x - 1} \right)\sqrt x }}} \right].\left( {\frac{{x - 1}}{{\sqrt x + 1}}} \right)\] \[ = \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\sqrt x }}\] \[ = \] \[\frac{{x - 1}}{{\sqrt x }}\]
Vậy \[P = \frac{{x - 1}}{{\sqrt x }}\]
Cách 2: Đặt \[a = \sqrt x \left( {a \ge 0} \right)\]
Ta có
\[P = \left( {\frac{a}{{a - 1}} - \frac{1}{{{a^2} - a}}} \right):\left( {\frac{1}{{a + 1}} + \frac{2}{{{a^2} - 1}}} \right) = \left[ {\frac{a}{{a - 1}} - \frac{1}{{a\left( {a - 1} \right)}}} \right]:\left[ {\frac{1}{{a + 1}} + \frac{2}{{\left( {a - 1} \right)\left( {a + 1} \right)}}} \right]\]
\[ = \frac{{{a^2} - 1}}{{a\left( {a - 1} \right)}}:\frac{{\left( {a - 1} \right) + 2}}{{a + 1}} = \frac{{\left( {a - 1} \right)\left( {a + 1} \right)}}{{a\left( {a - 1} \right)}}:\frac{{a + 1}}{{a + 1}} = \frac{{a + 1}}{a} = \frac{{\sqrt x + 1}}{{\sqrt x }}\]
Nhận xét : Bài toán rút gọn biểu thức có chứa biến
2) Ta có : \[P\sqrt x = m - \sqrt x \Leftrightarrow \frac{{x - 1}}{{\sqrt x }}.\sqrt x = m - \sqrt x \]
\[ \Leftrightarrow x - 1 = m - \sqrt x \Leftrightarrow m = x - 1 + \sqrt x \]
Vậy \[m = x - 1 + \sqrt x \]với \[0 < x \ne 1\]
Nhận xét : Bài toán tìm tham số để thỏa mãn một đẳng thức cho trước
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.