Câu hỏi:

12/07/2024 8,847

Một cồng có dạng một đường parabol (P). Biết chiều cao của cổng là 7,6 m và khoảng cách giữa hai chân cổng là 9 m. Người ta muốn treo một ngôi sao tại tiêu điểm F của (P) bằng một đoạn dây nối từ đỉnh S của cổng. Tính khoảng cách từ tâm ngôi sao đến đỉnh cổng.

Một cồng có dạng một đường parabol (P). Biết chiều cao của cổng là 7,6 m và khoảng cách giữa hai chân cổng là 9 m. Người ta muốn treo một ngôi sao tại tiêu điểm F của (P) bằng một đoạn dây nối từ đỉnh S của cổng. Tính khoảng cách từ tâm ngôi sao đến đỉnh cổng. (ảnh 1)

Câu hỏi trong đề:   Bài tập Parabol có đáp án !!

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Chọn hệ trục toạ độ sao cho gốc O trùng với đỉnh của parabol và trục Ox trùng với tâm đối xứng của parabol, đơn vị trên hai trục toạ độ là mét.

Một cồng có dạng một đường parabol (P). Biết chiều cao của cổng là 7,6 m và khoảng cách giữa hai chân cổng là 9 m. Người ta muốn treo một ngôi sao tại tiêu điểm F của (P) bằng một đoạn dây nối từ đỉnh S của cổng. Tính khoảng cách từ tâm ngôi sao đến đỉnh cổng. (ảnh 2)

Giả sử parabol có phương trình chính tắc y2= 2px (p > 0).

Vì chiều cao của cổng là 7,6 m và khoảng cách giữa hai chân cổng là 9 m nên ta có: khi x = 7,6 thì y = 9/2 = 4,5 => 4,52 = 2p . 7,6 => p = 405/304

=> Toạ độ của tâm ngôi sao là F(p/2;0) hay F (405/608;0)

=> Khoảng cách từ tâm ngôi sao đến đỉnh cổng là 405/608 mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một sao chổi A chuyển động theo quỹ đạo có dạng một parabol (P) nhận tâm Mặt Trời là tiêu điểm. Cho biết khoảng cách ngắn nhất giữa sao chổi A và tâm Mặt Trời là khoảng 112 km.

a) Viết phương trình chính tắc của parabol (P).

b) Tính khoảng cách giữa sao chổi A và tâm Mặt Trời khi sao chổi nằm trên đường thẳng đi qua tiêu điểm và vuông góc với trục đối xứng của (P).

Xem đáp án » 14/06/2022 4,334

Câu 2:

Cho điểm M(x; y) trên parabol (P): y2 = 2px (Hình 2). Tính khoảng cách từ điểm M đến tiêu điểm F của (P).

Cho điểm M(x; y) trên parabol (P): y2 = 2px (Hình 2). Tính khoảng cách từ điểm M đến tiêu điểm F của (P). (ảnh 1)

Xem đáp án » 12/07/2024 3,354

Câu 3:

Trong mặt phẳng Oxy, cho điểm A(1/4; 0) và đường thẳng d: x+1/4. Viết phương trình của đường (P) là tập hợp tâm M(x; y) của các đường tròn (C) di động nhưng luôn luôn đi qua A và tiếp xúc với d.

Xem đáp án » 11/07/2024 2,373

Câu 4:

Cho parabol (P). Trên (P) lấy hai điểm M, N sao cho đoạn thẳng MN đi qua tiêu điềm F của (P). Chứng minh rằng khoảng cách từ trung điểm I của đoạn thẳng MN đến đường chuẩn Δ của (P) bằng 1/2 MN và đường tròn đường kính MN tiếp xúc với Δ.

Xem đáp án » 11/07/2024 1,732

Câu 5:

Trong mặt phẳng Oxy, cho điểm A(2; 0) và đường thẳng d: x + 2 = 0. Viết phương trình của đường (L) là tập hợp các tâm J(x; y) của các đường tròn (C) thay đổi nhưng luôn luôn đi qua A và tiếp xúc với d.

Xem đáp án » 12/07/2024 1,701

Câu 6:

Tìm tọa độ tiêu điểm và phương trình đường chuẩn của các parabol sau:

a) (P1): y2= 7x;

b) (P2):y2=13x;

c) (P3):y2=2x.

Xem đáp án » 12/07/2024 1,590

Bình luận


Bình luận