Câu hỏi:

16/06/2022 1,134 Lưu

Một thùng rượu có bán kính đáy là thiết diện vuông góc với trục và cách đều hai đáy có bán kính là 40 cm, chiều cao thùng rượu là 1m (hình vẽ). Biết rằng mặt phẳng chứa trục và cắt mặt xung quanh thùng rượu là các đường parabol, hỏi thể tích của thùng rượu (đơn vị lít) là bao nhiêu?

Một thùng rượu có bán kính đáy là thiết diện vuông góc với trục và cách đều hai đáy có bán kính là 40 cm, chiều cao thùng rượu là 1m (hình vẽ). Biết rằng mặt phẳng chứa trục và cắt mặt xung quanh thùng rượu là các đường parabol, hỏi thể tích của thùng rượu (đơn vị lít) là bao nhiêu? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Một thùng rượu có bán kính đáy là thiết diện vuông góc với trục và cách đều hai đáy có bán kính là 40 cm, chiều cao thùng rượu là 1m (hình vẽ). Biết rằng mặt phẳng chứa trục và cắt mặt xung quanh thùng rượu là các đường parabol, hỏi thể tích của thùng rượu (đơn vị lít) là bao nhiêu? (ảnh 2)

Gọi parabol nằm trên là (P):y=ax2+bx+c (a0) .

Khi đó parabol đi qua điểm có tọa độ (0;4;0)  (vì thiết diện vuông góc với trục và cách đều hai đáy có bán kính 40cm) suy ra y(0)=40c=40 .

Đổi 1m = 100cm và bán kính đáy là 30cm nên ta có y(50)=y(50)=30

Từ đó 2500a+50b+40=2500a50b+40b=0

Suy ra 2500a+50.0+40=30a=1250 .

Phương trình Parabol (P):y=1250x2+40

Thể tích thùng rượu là   V=π5050(1250x2+40)2dx425162cm3=415,162lít.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

TXĐ: x3;x1;x1

Ÿlimx1x+32x21=limx1(x+32)(x+3+2)(x+3+2)(x1)(x+1)=limx1x1(x+3+2)(x1)(x+1)

 =limx11(x+3+2)(x+1)=18+nên  không là TCĐ của đồ thị hàm số đã cho.

Ÿlimx(1)+x+32x21=  nên x=1  là TCĐ của đồ thị hàm số đã cho.

Vậy đồ thị hàm số có 1 đường tiệm cận đứng .

Lời giải

Đáp án B

Ta có f2(cosx)+(m2018)f(cosx)+m2019=0[f(cosx)=1f(cosx)=2019m

+ Với f(cosx)=1[cosx=0cosx=a>1 (loai)cosx=0 .

Phương trình này có hai nghiệm x1=π2  x2=3π2  thuộc đoạn [0;2π] .

+ Với f(cosx)=2019m  ta cần tìm điều kiện để phương trình này có 4 nghiệm phân biệt thuộc [0;2π]  khác x1, x2 .

Đặt t=cosx[1;1]  với mọi x[0;2π]   ta được f(t)=2019m  (1).

Với t=1  phương trình (1) cho đúng một nghiệm  x=π với t=0 phương trình cho hai nghiệm x1, x2 .

Với mỗi t(1;1]\{0}   phương trình cho hai nghiệm x[0;2π]  khác x1, x2  .

Vậy điều kiện cần tìm là phương trình (1) phải có hai nghiệm phân biệt t(1;1]\{0}

1<2019m12018m<2020.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP