Câu hỏi:
13/07/2024 5,690Kết quả điều tra mức lương hằng tháng của một số công nhân của hai nhà máy A và B được cho ở bảng sau (đơn vị: triệu đồng):
a) Hãy tìm số trung bình, mốt, tứ phân vị và độ lệch chuẩn của hai mẫu số liệu lấy từ nhà máy A và nhà máy B.
b) Hãy tìm các giá trị ngoại lệ trong mỗi mẫu số liệu trên. Công nhân nhà máy nào có mức lương cao hơn? Tại sao?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a)
* Nhà máy A:
+ Số trung bình mức lương hàng tháng:
.
+ Giá trị 4 và 5 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy A là 4 và 5.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
4; 4; 4; 5; 5; 5; 6; 47.
Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2A = 5.
Tứ phân vị thứ nhất là trung vị của mẫu: 4; 4; 4; 5. Do đó Q1A = 4.
Tứ phân vị thứ ba là trung vị của mẫu: 5; 5; 6; 47. Do đó Q3A = 5,5.
+ Phương sai mẫu:
(42 + 52 + 52 + 472 + 52 + 62 + 42 + 42) – 102 = 196.
+ Độ lệch chuẩn: SA = .
* Nhà máy B:
+ Số trung bình mức lương hàng tháng:
.
+ Giá trị 9 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy B là 9.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
2; 8; 9; 9; 9; 9; 9; 10; 11.
Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2B = 9.
Tứ phân vị thứ nhất là trung vị của mẫu: 2; 8; 9; 9. Do đó Q1B = 8,5.
Tứ phân vị thứ ba là trung vị của mẫu: 9; 9; 10; 11. Do đó Q3B = 9,5.
+ Phương sai mẫu:
(22 + 82 + 92 + 92 + 92 + 92 + 92 + 102 + 112) – 8,42 = 6,55.
+ Độ lệch chuẩn: SB = .
b)
+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy A là: ∆QA = 5,5 – 4 = 1,5.
Ta có: Q3A + 1,5∆QA = 5,5 + 1,5 . 1,5 = 7,75 và Q1A – 1,5∆QA = 4 – 1,5 . 1,5 = 1,75.
Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy A là 47.
+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy B là: ∆QB = 9,5 – 8,5 = 1.
Ta có: Q3B + 1,5∆QB = 9,5 + 1,5 . 1 = 11 và Q1B – 1,5∆QB = 8,5 – 1,5 . 1 = 7.
Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy B là 2.
+ Quan sát các số liệu tính được ở câu a), ta thấy
- Số trung bình mức lương hàng tháng của công nhân ở nhà máy A cao hơn nhà máy B.
- Phương sai mẫu và độ lệch chuẩn mẫu số liệu ở nhà máy A cao hơn nhà máy B nên mức lương hằng tháng của công nhân nhà máy A có độ phân tán cao hơn nhà máy B, do đó mức lương của công nhân nhà máy B ổn định hơn nhà máy A.
- Mức lương xuất hiện nhiều nhất trong mẫu A là 4 và 5 triệu đồng, nhà máy B là 9 triệu đồng.
Do đó, ta có thể khẳng định công nhân nhà máy A có mức lương cao hơn (đều và ổn định hơn).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Bảng dưới đây thống kê tổng số giờ nắng trong năm 2019 theo từng tháng được đo bởi hai trạm quan sát khí tượng đặt ở Tuyên Quang và Cà Mau.
a) Hãy tính phương sai và độ lệch chuẩn của dữ liệu từng tỉnh.
b) Nêu nhận xét về sự thay đổi tổng số giờ nắng theo từng tháng ở mỗi tỉnh.
Câu 2:
Hãy tìm giá trị ngoại lệ của mẫu số liệu: 37; 12; 3; 9; 10; 9; 12; 3; 10.
Câu 3:
Hãy tìm khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:
a) 10; 13; 15; 2; 10; 19; 2; 5; 7.
b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15.
Câu 4:
Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng trong năm 2019 của hai tỉnh Lai Châu và Lâm Đồng (được đề cập đến ở hoạt động khởi động của bài học).
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu và Lâm Đồng.
b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.
Câu 5:
a) Hãy tính độ lệch chuẩn và khoảng biến thiên của sản lượng lúa từng tỉnh.
b) Tỉnh nào có sản lượng lúa ổn định hơn? Tại sao?
Câu 6:
a) Hãy tính độ chênh lệch giữa thời gian chạy của người nhanh nhất và người chậm nhất trong từng nhóm.
b) Nhóm nào có thành tích chạy đồng đều hơn?
về câu hỏi!