Câu hỏi:

13/07/2024 13,359

Kết quả điều tra mức lương hằng tháng của một số công nhân của hai nhà máy A và B được cho ở bảng sau (đơn vị: triệu đồng):

Media VietJack

a) Hãy tìm số trung bình, mốt, tứ phân vị và độ lệch chuẩn của hai mẫu số liệu lấy từ nhà máy A và nhà máy B.

b) Hãy tìm các giá trị ngoại lệ trong mỗi mẫu số liệu trên. Công nhân nhà máy nào có mức lương cao hơn? Tại sao?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

* Nhà máy A:

+ Số trung bình mức lương hàng tháng:

xA¯=4+5+5+47+5+6+4+48=10.

+ Giá trị 4 và 5 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy A là 4 và 5.

+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:

4; 4; 4; 5; 5; 5; 6; 47.

Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2A = 5.

Tứ phân vị thứ nhất là trung vị của mẫu: 4; 4; 4; 5. Do đó Q1A = 4.

Tứ phân vị thứ ba là trung vị của mẫu: 5; 5; 6; 47. Do đó Q3A = 5,5.

+ Phương sai mẫu:

SA2=18(42 + 52 + 52 + 472 + 52 + 62 + 42 + 42) – 102 = 196.

+ Độ lệch chuẩn: SA = SA2=196=14.

* Nhà máy B:

+ Số trung bình mức lương hàng tháng:

xB¯=2+9+9+8+10+9+9+11+998,4.

+ Giá trị 9 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy B là 9.

+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:

2; 8; 9; 9; 9; 9; 9; 10; 11.

Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2B = 9.

Tứ phân vị thứ nhất là trung vị của mẫu: 2; 8; 9; 9. Do đó Q1B = 8,5.

Tứ phân vị thứ ba là trung vị của mẫu: 9; 9; 10; 11. Do đó Q3B = 9,5.

+ Phương sai mẫu:

SB2=19(22 + 82 + 92 + 92 + 92 + 92 + 92 + 102 + 112) – 8,42 = 6,55.

+ Độ lệch chuẩn: SB = SB2=6,552,6.

b)

+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy A là: ∆QA = 5,5 – 4 = 1,5.

Ta có: Q3A + 1,5∆QA = 5,5 + 1,5 . 1,5 = 7,75 và Q1A – 1,5∆QA = 4 – 1,5 . 1,5 = 1,75.

Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy A là 47.

+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy B là: ∆QB = 9,5 – 8,5 = 1.

Ta có: Q3B + 1,5∆QB = 9,5 + 1,5 . 1 = 11 và Q1B – 1,5∆QB = 8,5 – 1,5 . 1 = 7.

Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy B là 2.

+ Quan sát các số liệu tính được ở câu a), ta thấy

- Số trung bình mức lương hàng tháng của công nhân ở nhà máy A cao hơn nhà máy B.

- Phương sai mẫu và độ lệch chuẩn mẫu số liệu ở nhà máy A cao hơn nhà máy B nên mức lương hằng tháng của công nhân nhà máy A có độ phân tán cao hơn nhà máy B, do đó mức lương của công nhân nhà máy B ổn định hơn nhà máy A.

- Mức lương xuất hiện nhiều nhất trong mẫu A là 4 và 5 triệu đồng, nhà máy B là 9 triệu đồng.

Do đó, ta có thể khẳng định công nhân nhà máy A có mức lương cao hơn (đều và ổn định hơn).


 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

3; 3; 9; 9; 10; 10; 12; 12; 37.

+ Vì cỡ mẫu là n = 9 lá số lẻ nên giá trị tứ phân vị thứ hai là Q2 = 10.

+ Tứ phân vị thứ nhất là trung vị của mẫu: 3; 3; 9; 9. Do đó Q1 = 6.

+ Tứ phân vị thứ ba là trung vị của mẫu: 10; 12; 12; 37. Do đó Q3 = 12.

+ Khoảng tứ phân vị của mẫu là: ∆Q = 12 – 6 = 6.

Ta có: Q3 + 1,5∆Q = 12 + 1,5 . 6 = 21 và Q1 – 1,5∆Q = 6 – 1,5 . 6 = – 3.

Do đó mẫu có một giá trị ngoại lệ là 37.

Lời giải

a)

* Tỉnh Tuyên Quang:

+ Số trung bình:

x1¯=25+89+72+117+106+177+156+203+227+146+117+14512131,67

+ Phương sai mẫu số liệu ở tỉnh Tuyên Quang là:

 S12=112(252+892+722+1172+1062+1772+1562+2032+2272+1462+1172+1452)(131,67)2 ≈ 2920,34.

+ Độ lệch chuẩn mẫu số liệu ở tỉnh Tuyên Quang là:

S1 = S12=2920,3454,04.

* Tỉnh Cà Mau:

+ Số trung bình:

x2¯=180+223+257+245+191+111+141+134+130+122+157+17312=172

+ Phương sai mẫu số liệu ở tỉnh Cà Mau là:

S22=112(1802 + 2232 + 2572 + 2452 + 1912 + 1112 + 1412 + 1342 + 1302 + 1222 + 1572 + 1732) – 1722 = 2183.

+ Độ lệch chuẩn mẫu số liệu ở tỉnh Cà Mau là:

S2 = S22=218346,72.

b) Phương sai mẫu và độ lệch chuẩn mẫu số liệu ở tỉnh Tuyên Quang cao hơn tỉnh Cà Mau nên tổng số giờ nắng trong năm 2019 theo từng tháng ở tỉnh Tuyên Quang có độ phân tán cao hơn ở tỉnh Cà Mau. Do đó, sự thay đổi tổng số giờ nắng theo từng tháng ở tỉnh Cà Mau ổn định (có ít sự thay đổi) hơn so với tỉnh Tuyên Quang.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay