Câu hỏi:
13/07/2024 10,036Bạn Châu cân lần lượt 50 quả vải thiều Thanh Hà được lựa chọn ngẫu nhiên từ vườn nhà mình và được kết quả như sau:
a) Hãy tìm số trung bình, trung vị, mốt của mẫu số liệu trên.
b) Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ của mẫu số liệu trên.
Câu hỏi trong đề: Bài tập cuối chương VI có đáp án !!
Quảng cáo
Trả lời:
a) Cỡ mẫu là: n = 50.
Số trung bình:
Giá trị 20 có tần số lớn nhất nên mốt của mẫu số liệu là 20.
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
8; 19; 19; 19; 19; 19; 19; 19; 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 22; 22; 22.
Vì cỡ mẫu là số chẵn nên trung vị mẫu là .
b) Phương sai mẫu là:
S2 = (1 . 82 + 10 . 192 + 19 . 202 + 17 . 212 + 3 . 222) – 20,022 = 3,6596.
Độ lệch chuẩn mẫu số liệu là: S = .
Khoảng biến thiên của mẫu là: R = 22 – 8 = 14.
Tứ phân vị thứ hai là trung vị của mẫu số liệu đã cho nên Q2 = 20.
Tứ phân vị thứ nhất là trung vị của mẫu: 8; 19; 19; 19; 19; 19; 19; 19; 19; 19; 19; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20; 20. Do đó Q1 = 20.
Tứ phân vị thứ ba là trung vị của mẫu: 20; 20; 20; 20; 20; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 21; 22; 22; 22. Do đó Q3 = 21.
Khoảng tứ phân vị là ∆Q = 21 – 20 = 1.
Ta có: Q3 + 1,5∆Q = 21 + 1,5 . 1 = 22,5 và Q1 – 1,5∆Q = 20 – 1,5 . 1 = 18,5.
Do đó giá trị ngoại lệ của mẫu số liệu đã cho là 8.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
* Năm 2019:
+ Số trung bình:
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
22; 24; 29; 29; 30; 31; 31; 35; 37; 40; 40; 54.
Vì cỡ mẫu là 12 là số chẵn nên tứ phân vị thứ hai là Q2 = 31.
Tứ phân vị thứ nhất là trung vị của mẫu: 22; 24; 29; 29; 30; 31. Do đó Q1 = 29.
Tứ phân vị thứ ba là trung vị của mẫu: 31; 35; 37; 40; 40; 54. Do đó Q3 = 38,5.
Khoảng tứ phân vị ∆Q = 38,5 – 29 = 9,5.
+ Phương sai mẫu:
S2 = (542 + 222 + 242 + 302 + 352 + 402 + 312 + 292 + 292 + 372 + 402 + 312) – 33,52
= 67,25.
+ Độ lệch chuẩn mẫu: S = .
* Năm 2020:
+ Số trung bình:
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
28; 31; 32; 33; 33; 34; 34; 35; 35; 37; 37; 45.
Vì cỡ mẫu là 12 là số chẵn nên tứ phân vị thứ hai là Q'2 = 34.
Tứ phân vị thứ nhất là trung vị của mẫu: 28; 31; 32; 33; 33; 34. Do đó Q'1 = 32,5.
Tứ phân vị thứ ba là trung vị của mẫu: 34; 35; 35; 37; 37; 45. Do đó Q'3 = 36.
Khoảng tứ phân vị ∆'Q = 36 – 32,5 = 3,5.
+ Phương sai mẫu:
(S')2 = (452 + 282 + 312 + 342 + 322 + 352 + 372 + 332 + 332 + 352 + 342 + 372) – 34,52
= 15,75.
+ Độ lệch chuẩn mẫu: S' = .
b) Từ câu a, ta thấy phương sai mẫu, độ lệch chuẩn mẫu, khoảng tứ phân vị của số lượng xe bán được trong năm 2019 cao hơn so năm 2020, điều đó có nghĩa là số lượng xe bán được trong năm 2019 có độ phân tán cao hơn năm 2020. Do đó số lượng xe bán ra hằng tháng trong năm 2020 ổn định hơn so với năm 2019.
Hơn nữa, số xe trung bình bán được hàng tháng năm 2020 cao hơn năm 2019.
Vậy chiến lược kinh doanh mới đã tác động tốt lên số xe bán được năm 2020 hay ta nói chiến lược kinh doanh hiệu quả.
Lời giải
a)
* Đội A:
+ Số trung bình của tuổi:
+ Giá trị 24 có tần số lớn nhất (3) nên mốt của mẫu số liệu ở đội A là 24.
+ Phương sai mẫu:
(282 + 242 + 262 + 252 + 252 + 232 + 202 + 292 + 212 + 242 + 242) – (24,45)2
≈ 6,65.
+ Độ lệch chuẩn mẫu số liệu: SA = .
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
20; 21; 23; 24; 24; 24; 25; 25; 26; 28; 29.
Vì cỡ mẫu là 11 là số lẻ nên tứ phân vị thứ hai là Q2A = 24.
Tứ phân vị thứ nhất là trung vị của mẫu: 20; 21; 23; 24; 24. Do đó Q1A = 23.
Tứ phân vị thứ ba là trung vị của mẫu: 25; 25; 26; 28; 29. Do đó Q3A = 26.
* Đội B:
+ Số trung bình của tuổi:
+ Giá trị 29 có tần số lớn nhất (3) nên mốt của mẫu số liệu ở đội B là 29.
+ Phương sai mẫu:
(322 + 202 + 192 + 212 + 282 + 292 + 212 + 222 + 292 + 192 + 292) – (24,45)2
≈ 22,11.
+ Độ lệch chuẩn mẫu số liệu: SB = .
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
19; 19; 20; 21; 21; 22; 28; 29; 29; 29; 32.
Vì cỡ mẫu là 11 là số lẻ nên tứ phân vị thứ hai là Q2B = 22.
Tứ phân vị thứ nhất là trung vị của mẫu: 19; 19; 20; 21; 21. Do đó Q1B = 20.
Tứ phân vị thứ ba là trung vị của mẫu: 28; 29; 29; 29; 32. Do đó Q3B = 29.
b) Ta thấy độ lệch chuẩn và phương sai mẫu số liệu ở đội B cao hơn đội A. Điều đó có nghĩa là tuổi của các cầu thủ ở đội B có độ phân tán cao hơn đội A.
Vậy tuổi của các cầu thủ ở đội A đồng đều hơn đội B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận