Câu hỏi:

11/01/2020 4,005

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), tam giác ABC vuông tại B. Biết SA=2a, AB=a, BC=a3. Tính bán kính R của mặt cầu ngoại tiếp hình chóp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án là C

Ta có:

Do đó 2 điểm A, B nhìn đoạn SC dưới một góc vuông. Suy ra mặt cầu ngoại tiếp hình chóp S. ABC là mặt cầu đường kính SC.

Xét tam giác ABC có 

suy ra 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án là B 

Gọi H là trung điểm của AB . Tam giác SAB đều nên suy ra SH AB  . Theo giả thiết (SAB) vuông góc với ( ABCD) và có giao tuyến AB nên suy ra SH (ABCD) tại H . Có AH (SBD) = B nên

Trong ( ABCD) kẻ HI BD  tại I , kết hợp SH (ABCD) ta suy ra

BD (SHI) =>  (SHI)  (SBD) , mà (SHI ) (SBD) = SI nên trong (SHI) nếu ta kẻ HK SI  tại K thì HK (SBD) tại K , do đó HK = d (H,( SBD)) .

Ta tính được : 

Tam giác SAB đều cạnh 2a nên SH=a3

Tam giác SHI vuông tại H đường cao HK nên 

Vậy khoảng cách từ A đến (SBD) là: a32

Lời giải

Đáp án là C

+ Gọi O là giao điểm của AC,BD

 MO \\ SB =>  SB \\ ACM

 d  (SB,ACM)= d (B,ACM) = d (D,ACM) .

+ Gọi I là trung điểm của AD ,

+ Trong ABCD: IK AC  (với K   AC ).

+ Trong MIK: IH  MK  (với H  MK )  (1) .

+ Ta có: AC  MI ,AC  IK => AC  MIK => AC  IH (2).

Từ 1 và 2 suy ra

IH  ACM  d(I ,ACM) = IH  .

+ Tính IH ?

- Trong tam giác vuông MIK. 

- Mặt khác

Vậy d(SB,(ACM))=2a3

Lời giải khác

Chọn hệ trục tọa độ như hình vẽ, trong đó:

A (0;0;0) ,B (a;0;0); D (0; a;0) ;C (a; a;0); S (0;0;2a)

Vì M là trung điểm của  SD M0;a2;a

Gọi O là giao điểm của AC , BD

 MO // SB  => SB//(ACM)

=> d(SB, (ACM))=d(B,(ACM))

Ta có:

là một VTPT của mp ( ACM ).

Vậy phương trình mặt phẳng ( ACM ): 2x-2y+z=0

=> d(SB, (ACM))=d(B,(ACM)) =2a3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay