Câu hỏi:

15/01/2020 44,292

Đội học sinh giỏi trường THPT Lý Thái Tổ gồm có 8 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Chọn ngẫu nhiên 8 học sinh. Xác suất để trong 8 học sinh được chọn có đủ 3 khối là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Lấy 8 học sinh trong 19 học sinh có C198=75582 cách.

Suy ra số phân tử của không gian mẫu là n(Ω)=75582

Gọi X là biến cố “8 học sinh được chọn có đủ 3 khi

Xét biến c đi của biến cố X gồm các trường hợp sau:

+ 8 học sinh được chọn từ 2 khối, khi đó có C148+C118+C138 cách.

+ 8 học sinh được chọn từ 1 khối, khi đó có C88 cách.

Do đó, số kết quả thuận lợi cho biển cổ X là n(X)=C198-(C148+C118+C138+C88)=71128.

Vậy xác suất cần tính là P=n(X)n(Ω)=7112875582.

Bình luận


Bình luận

Thanh Tân
19:51 - 08/04/2022

Lời giải bị sai cách làm bấm máy tính đoạn cuối ko ra 71128

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Có 2 trường hợp sau:

+) 1 thẻ ghi số chẵn, 1 thẻ ghi số lẻ, suy ra có C41.C51=20 cách rút.

+) 2 thẻ ghi số chẵn, suy ra có C42=6 cách rút.

Suy ra xác suất bằng 20+6C92=1318.

Lời giải

Đáp án A

Xếp một hàng thành 6 ô đánh số từ 1 đển 6 như hình bên:

Số các chữ số gồm 6 chữ số khác nhau được lập từ 6 chữ số đã cho là 5.5! = 600 số.

Ta tìm số các số mà hai chữ số 0 và 5 đứng cạnh nhau:

• Chữ số 0 và 5 cạnh nhau tại ô số 1 và 2 có 1.4! = 24 số.

• Chữ số 0 và 5 đứng cạnh nhau tại các ô (2;3), (3;4), (4;5), (5;6) có 4.2!.4! = 192 số.

Vậy có tất cả 24 + 192 = 216 số mà chữ số 0 và 5 đứng cạnh nhau.

Do đó, số các số thỏa mãn yêu cầu bài toán là 600 – 216 = 384 số.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay