Câu hỏi:

13/07/2024 43,934

B. Bài tập

Vẽ các đường parabol sau:

a) y = x2 – 3x + 2;

b) y = – 2x2 + 2x + 3;

c) y = x2 + 2x + 1;

d) y = – x2 + x – 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) y = x2 – 3x + 2

Ta có: a = 1 > 0 nên parabol quay bề lõm lên trên.

Parabol y = x2 – 3x + 2 có:

+ Tọa độ đỉnh I\(\left( {\frac{3}{2}; - \frac{1}{4}} \right)\);

+ Trục đối xứng \(x = \frac{3}{2}\);

+ Giao điểm của đồ thị với trục Oy là A(0; 2).

+ Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình x2 – 3x + 2 = 0, tức là x = 2 và x = 1;

+ Điểm đối xứng với điểm A qua trục đối xứng \(x = \frac{3}{2}\) là B(3; 2).

Vẽ đường cong đi qua các điểm trên ta được parabol cần vẽ.

Media VietJack

b) y = – 2x2 + 2x + 3

Ta có: a = – 2 < 0 nên parabol quay bề lõm xuống dưới.

Parabol y = – 2x2 + 2x + 3 có:

+ Tọa độ đỉnh I\(\left( {\frac{1}{2};\frac{7}{2}} \right)\);

+ Trục đối xứng \(x = \frac{1}{2}\);

+ Giao điểm của đồ thị với trục Oy là A(0; 3).

+ Parabol cắt trục hoành tại hai điểm có hoành độ là nghiệm của phương trình – 2x2 + 2x + 3 = 0, tức là x = \(\frac{{1 + \sqrt 7 }}{2}\) và x = \(\frac{{1 - \sqrt 7 }}{2}\);

+ Điểm đối xứng với điểm A qua trục đối xứng \(x = \frac{1}{2}\) là B(1; 3).

Vẽ đường cong đi qua các điểm trên ta được parabol cần vẽ.

Media VietJack

c) y = x2 + 2x + 1

Ta có: a = 1 > 0 nên parabol quay bề lõm lên trên.

Parabol y = x2 + 2x + 1 có:

+ Tọa độ đỉnh I(– 1; 0)

+ Trục đối xứng x = – 1;

+ Giao điểm của đồ thị với trục Oy là A(0; 1).

+ Điểm đối xứng với điểm A qua trục đối xứng x = – 1 là B(– 2; 1).

+ Lấy điểm C(1; 4) thuộc parabol, điểm đối xứng với C qua trục đối xứng x = – 1 là D(– 3; 4).

Vẽ đường cong đi qua các điểm trên ta được parabol cần vẽ.

Media VietJack

d) y = – x2 + x – 1

Ta có: a = – 1 < 0 nên parabol quay bề lõm xuống dưới.

Parabol y = – x2 + x – 1 có:

+ Tọa độ đỉnh I\(\left( {\frac{1}{2}; - \frac{3}{4}} \right)\);

+ Trục đối xứng \(x = \frac{1}{2}\);

+ Giao điểm của đồ thị với trục Oy là A(0; – 1).

+ Điểm đối xứng với điểm A qua trục đối xứng \(x = \frac{1}{2}\) là B(1; – 1).

+ Lấy điểm C(2; – 3) thuộc parabol, điểm đối xứng với điểm C qua trục đối xứng x=12 là D(– 1; – 3).

Vẽ đường cong đi qua các điểm trên ta được parabol cần vẽ.

Media VietJack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Điều kiện: a ≠ 0.

a) Parabol y = ax2 + bx + 1 đi qua điểm A(1; 0) nên ta có tọa độ điểm A thỏa mãn hàm số y = ax2 + bx + 1, do đó: 0 = a . 12 + b . 1 + 1

a + b + 1 = 0 a = – 1 – b             (1a).

 Parabol y = ax2 + bx + 1 đi qua điểm B(2; 4) nên ta có tọa độ điểm B thỏa mãn hàm số y = ax2 + bx + 1, do đó: 4 = a . 22 + b . 2 + 1

4a + 2b = 3       (2a).

Thay (1a) vào (2a) ta được: 4 . (– 1 – b) + 2b = 3 – 2b = 7 b = \( - \frac{7}{2}\).

Suy ra: a = – 1 \( - \left( { - \frac{7}{2}} \right) = \frac{5}{2}\).

Vậy ta có parabol: \(y = \frac{5}{2}{x^2} - \frac{7}{2}x + 1\).

b) Parabol y = ax2 + bx + 1 đi qua điểm A(1; 0) nên ta có tọa độ điểm A thỏa mãn hàm số y = ax2 + bx + 1, do đó: 0 = a . 12 + b . 1 + 1

a + b + 1 = 0 a = – 1 – b             (1b).

Parabol y = ax2 + bx + 1 có trục đối xứng x = 1 nên \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b\)    (2b).

Thay (1b) vào (2b) ta có: 2 . (– 1 – b) = – b b = – 2.

Suy ra: a = – 1 – (– 2) = 1.

Vậy ta có parabol: y = x2 – 2x + 1.

c) Parabol y = ax2 + bx + 1 có đỉnh I(1; 2).

Do đó: \(\frac{{ - b}}{{2a}} = 1 \Leftrightarrow 2a = - b\) và 2 = a . 12 + b . 1 + 1 a + b = 1 a = 1 – b.

Suy ra: 2 . (1 – b) = – b b = 2.

Khi đó: a = 1 – 2 = – 1.

Vậy ta có parabol: y = – x2 + 2x + 1.

d) Parabol y = ax2 + bx + 1 đi qua điểm C(– 1; 1) nên ta có tọa độ điểm C thỏa mãn hàm số y = ax2 + bx + 1, do đó: 1 = a . (– 1)2 + b . (– 1) + 1

a – b = 0 a = b.

Ta có: ∆ = b2 – 4ac = a2 – 4 . a . 1 = a2 – 4a.

Tung độ đỉnh bằng – 0,25 nên \( - \frac{\Delta }{{4a}} = - 0,25 \Leftrightarrow \frac{{{a^2} - 4a}}{{4a}} = 0,25\)

\( \Leftrightarrow \frac{{a\left( {a - 4} \right)}}{{4a}} = \frac{1}{4}\)\( \Leftrightarrow \frac{{a - 4}}{4} = \frac{1}{4}\)          (do a ≠ 0)

a – 4 = 1 a = 5.

Do đó: a = b = 5.

Vậy ta có parabol: y = 5x2 + 5x + 1.

Lời giải

Hướng dẫn giải

a) Bác Hùng dùng lưới để rào thành một mảnh vườn hình chữ nhật có chiều rộng x (mét) như sau:

Media VietJack

Vì tấm lưới dài 40 m, hay chính là chu vi của mảnh vườn hình chữ nhật ABCD là 40 m.

Suy ra nửa chu vi của mảnh vườn là 40 : 2 = 20 m.

Do đó chiều dài của mảnh vườn rào được theo chiều rộng x (mét) là: 20 – x (m).

Diện tích mảnh vườn hình chữ nhật rào được theo chiều rộng x (mét) là:

S(x) = x . (20 – x) = – x2 + 20x (m2).

b) Để tìm diện tích lớn nhất của mảnh vườn hình chữ nhật bác Hùng có thể rào được, ta tính giá trị lớn nhất của hàm số S(x), đây là hàm số bậc hai.

Tọa độ đỉnh của đồ thị hàm số bậc hai S(x) = – x2 + 20x là I(10; 100).

Do đó giá trị lớn nhất của hàm số S(x) là S =100 tại x = 10.

Suy ra chiều dài khi chiều rộng x = 10 m là 20 – 10 = 10 (m).

Vậy để mảnh vườn rào được có diện tích lớn nhất thì bác Hùng nên rào lưới thép gai thành hình vuông có độ dài cạnh là 10 m.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay