Câu hỏi:

13/07/2024 22,816

Quỹ đạo của một vật được ném lên từ gốc O (được chọn là điểm ném) trong mặt phẳng tọa độ Oxy là một parabol có phương trình \(y = \frac{{ - 3}}{{1000}}{x^2} + x\), trong đó x (mét) là khoảng cách theo phương ngang trên mặt đất từ vị trí của vật đến gốc O, y (mét) là độ cao của vậy so với mặt đất (H.6.15).

a) Tìm độ cao lớn nhất của vật trong quá trình bay.

b) Tính khoảng cách từ điểm chạm đất sau khi bay của vật đến gốc O. Khoảng cách này gọi là tầm xa của quỹ đạo.

Media VietJack

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Độ cao lớn nhất của vật trong quá trình bay chính là tung độ đỉnh của parabol có phương trình \(y = \frac{{ - 3}}{{1000}}{x^2} + x\).

Ta có tọa độ đỉnh là I\(\left( {\frac{{500}}{3};\,\frac{{250}}{3}} \right)\).

Vậy độ cao lớn nhất của vật trong quá trình bay là \(\frac{{250}}{3} \approx 83,33\) mét.

b) Khi vật chạm đất, tức là y = 0 hay \(\frac{{ - 3}}{{1000}}{x^2} + x = 0\)

\( \Leftrightarrow x\left( {\frac{{ - 3}}{{1000}}x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{1000}}{3}\end{array} \right.\)

Ta loại trường hợp x = 0 vì đây là vị trí điểm gốc tọa độ O.

Vậy khoảng cách từ điểm chạm đất sau khi bay của vật đến gốc O hay tầm xa của quỹ đạo là 10003333,33 mét.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xác định parabol y = ax2 + bx + 1, trong mỗi trường hợp sau:

a) Đi qua hai điểm A(1; 0) và B(2; 4);

b) Đi qua điểm A(1; 0) và có trục đối xứng x = 1;

c) Có đỉnh I(1; 2);

d) Đi qua điểm C(– 1; 1) và có tung độ đỉnh bằng – 0,25.

Xem đáp án » 13/07/2024 42,547

Câu 2:

B. Bài tập

Vẽ các đường parabol sau:

a) y = x2 – 3x + 2;

b) y = – 2x2 + 2x + 3;

c) y = x2 + 2x + 1;

d) y = – x2 + x – 1.

Xem đáp án » 13/07/2024 31,278

Câu 3:

Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau.

a) Tính diện tích mảnh vườn hình chữ nhật được rào theo chiều rộng x (mét) của nó.

b) Tìm kích thước của mảnh vườn hình chữ nhật có diện tích lớn nhất mà bác Hùng có thể rào được.

Xem đáp án » 13/07/2024 28,183

Câu 4:

Hai bạn An và Bình trao đổi với nhau.

An nói: Tớ đọc ở một tài liệu thấy nói rằng cổng Trường Đại học Bách khoa Hà Nội (H.6.14) có dạng một parabol, khoảng cách giữa hai chân cổng là 8 m và chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng 0,5 m 2,93 m. Từ đó tớ tính ra được chiều cao của cổng parabol đó là 12 m.

Sau một hồi suy nghĩ, Bình nói: Nếu dữ kiện như bạn nói, thì chiều cao của cổng parabol mà bạn tính ra ở trên là không chính xác.

Media VietJack

Dựa vào thông tin mà An đọc được, em hãy tính chiều cao của cổng Trường Đại học Bách khoa Hà Nội để xem kết quả bạn An tính được có chính xác không nhé!

Xem đáp án » 13/07/2024 21,395

Câu 5:

A. Các câu hỏi trong bài

Bác Việt có một tấm lưới hình chữ nhật dài 20 m. Bác muốn dùng tấm lưới này rào chắn ba mặt áp bên bờ tường của khu vườn nhà mình thành một mảnh đất hình chữ nhật để trồng rau.

Media VietJack

Hỏi hai cột góc hàng rào cần phải cắm cách bờ tường bao xa để mảnh đất được rào chắn của bác có diện tích lớn nhất?

Xem đáp án » 13/07/2024 19,018

Câu 6:

Hàm số nào dưới đây là hàm số bậc hai?

Xem đáp án » 25/06/2022 16,356

Bình luận


Bình luận