Câu hỏi:
13/07/2024 989Nêu nội dung thay vào ô có dấu “?” trong bảng sau cho thích hợp.
• Trường hợp a > 0
∆ |
∆ < 0 |
∆ = 0 |
∆ > 0 |
Dạng đồ thị |
|
|
|
Vị trí của đồ thị so với trục Ox |
Đồ thị nằm hoàn toàn phía trên trục Ox. |
Đồ thị nằm phía trên trục Ox và tiếp xúc với trục Ox tại điểm có hoành độ \(x = - \frac{b}{{2a}}\). |
- Đồ thị nằm phía trên trục Ox khi x < x1 hoặc x > x2. - Đồ thị nằm phía dưới trục Ox khi x1 < x < x2. |
• Trường hợp a < 0
∆ |
∆ < 0 |
∆ = 0 |
∆ > 0 |
Dạng đồ thị |
|
|
|
Vị trí của đồ thị so với trục Ox |
? |
? |
? |
Câu hỏi trong đề: Bài tập Bài 17. Dấu của tam thức bậc hai có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta điền vào bảng như sau:
• Trường hợp a < 0
∆ |
∆ < 0 |
∆ = 0 |
∆ > 0 |
Dạng đồ thị |
|
|
|
Vị trí của đồ thị so với trục Ox |
Đồ thị nằm hoàn toàn phía dưới trục Ox. |
Đồ thị nằm phía dưới trục Ox và tiếp xúc với trục Ox tại điểm có hoành độ \(x = - \frac{b}{{2a}}\). |
- Đồ thị nằm phía dưới trục Ox khi x < x1 hoặc x > x2. - Đồ thị nằm phía trên trục Ox khi x1 < x < x2. |
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có tam thức f(x) = x2 + (m + 1)x + 2m + 3 có ∆ = (m + 1)2 – 4 . 1 . (2m + 3) = m2 + 2m + 1 – 8m – 12 = m2 – 6m – 11.
Lại có hệ số a = 1 > 0.
Để f(x) luôn dương (cùng dấu hệ số a) với mọi \(x \in \mathbb{R}\) thì ∆ < 0.
⇔ m2 – 6m – 11 < 0.
Xét tam thức h(m) = m2 – 6m – 11 có ∆'m = (– 3)2 – 1 . (– 11) = 20 > 0 nên h(m) có hai nghiệm m1 = \(3 - \sqrt {20} = 3 - 2\sqrt 5 \) và m2 = \(3 + \sqrt {20} = 3 + 2\sqrt 5 \).
Mặt khác ta có hệ số am = 1 > 0, do đó ta có bảng xét dấu sau:
m |
– ∞ \(3 - 2\sqrt 5 \) \(3 + 2\sqrt 5 \) + ∞ |
h(m) |
+ 0 – 0 + |
Do đó, h(m) < 0 với mọi m \( \in \left( {3 - 2\sqrt 5 ;\,3 + 2\sqrt 5 } \right)\).
Hay ∆ < 0 với mọi m \( \in \left( {3 - 2\sqrt 5 ;\,3 + 2\sqrt 5 } \right)\).
Vậy m \( \in \left( {3 - 2\sqrt 5 ;\,3 + 2\sqrt 5 } \right)\) thì tam thức bậc hai đã cho luôn dương với mọi \(x \in \mathbb{R}\).
Lời giải
Độ cao của vật so với mặt đất được mô tả bởi công thức
h(t) = h0 + v0t – gt2,
trong đó v0 = 20 m/s là vận tốc ban đầu của vật, t là thời gian chuyển động tính bằng giây, g là gia tốc trọng trường (thường lấy g ≈ 9,8 m/s2) và độ cao h(t) tính bằng mét.
Khi đó ta có: h(t) = 320 + 20t – . 9,8 . t2 hay h(t) = – 4,9t2 + 20t + 320, đây là một hàm số bậc hai.
Vật cách mặt đất không quá 100 m khi và chỉ khi h(t) ≤ 100, tức là – 4,9t2 + 20t + 320 ≤ 100 hay tương đương 4,9t2 – 20t – 220 ≥ 0 (1).
Xét tam thức f(t) = 4,9t2 – 20t – 220 có ∆' = (– 10)2 – 4,9 . (– 220) = 1 178 > 0 nên f(t) có hai nghiệm và .
Mà hệ số af = 1 > 0 nên ta có bảng xét dấu f(t):
t |
– ∞ + ∞ |
f(t) |
+ 0 – 0 + |
Suy ra bất phương trình (1) có nghiệm t ≤ hoặc t ≥ .
Mà thời gian t > 0 nên t ≥ ≈ 9,05.
Vậy sau ít nhất khoảng 9,05 giây thì vật đó cách mặt đất không quá 100 m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận