Câu hỏi:

13/07/2024 7,158 Lưu

Xét dấu các tam thức bậc hai sau:

a) – 3x2 + x \( - \sqrt 2 \);

b) x2 + 8x + 16;

c) – 2x2 + 7x – 3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) f(x) = – 3x2 + x \( - \sqrt 2 \) có ∆ = 12 – 4 . (– 3) . \(\left( { - \sqrt 2 } \right)\) = \(1 - 12\sqrt 2 \) < 0 và hệ số a = – 3 < 0 nên f(x) < 0 với mọi \(x \in \mathbb{R}\).

b) f(x) = x2 + 8x + 16 có ∆' = 42 – 1 . 16 = 0 và hệ số a = 1 > 0 nên f(x) có nghiệm kép x = – 4 và f(x) > 0 với mọi x ≠ – 4.

c) f(x) = – 2x2 + 7x – 3 có ∆ = 72 – 4 . (– 2) . (– 3) = 25 > 0, hệ số a = – 2 < 0 và có hai nghiệm phân biệt x1 = \(\frac{1}{2}\); x2 = 3.

Do đó ta có bảng xét dấu f(x):

x

– ∞                  \(\frac{1}{2}\)                         3                      + ∞

f(x)

                       0             +          0           

 

Suy ra f(x) > 0 với mọi x \( \in \left( {\frac{1}{2};\,\,3} \right)\) và f(x) < 0 với mọi x \(\left( { - \infty ;\,\,\,\frac{1}{2}} \right)\) (3; + ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có tam thức f(x) = x2 + (m + 1)x + 2m + 3 có ∆ = (m + 1)2 – 4 . 1 . (2m + 3) = m2 + 2m + 1 – 8m – 12 = m2 – 6m – 11.

Lại có hệ số a = 1 > 0.

Để f(x) luôn dương (cùng dấu hệ số a) với mọi \(x \in \mathbb{R}\) thì ∆ < 0.

m2 – 6m – 11 < 0.

Xét tam thức h(m) = m2 – 6m – 11 có ∆'m = (– 3)2 – 1 . (– 11) = 20 > 0 nên h(m) có hai nghiệm m1 = \(3 - \sqrt {20} = 3 - 2\sqrt 5 \) và m2 = \(3 + \sqrt {20} = 3 + 2\sqrt 5 \).

Mặt khác ta có hệ số am = 1 > 0, do đó ta có bảng xét dấu sau:

m

– ∞                \(3 - 2\sqrt 5 \)                   \(3 + 2\sqrt 5 \)                  + ∞

h(m)

             +             0                           0                +

Do đó, h(m) < 0 với mọi m \( \in \left( {3 - 2\sqrt 5 ;\,3 + 2\sqrt 5 } \right)\).

Hay ∆ < 0 với mọi m \( \in \left( {3 - 2\sqrt 5 ;\,3 + 2\sqrt 5 } \right)\).

Vậy m \( \in \left( {3 - 2\sqrt 5 ;\,3 + 2\sqrt 5 } \right)\) thì tam thức bậc hai đã cho luôn dương với mọi \(x \in \mathbb{R}\).

Lời giải

Độ cao của vật so với mặt đất được mô tả bởi công thức

h(t) = h0 + v0t – 12gt2,

trong đó v0 = 20 m/s là vận tốc ban đầu của vật, t là thời gian chuyển động tính bằng giây, g là gia tốc trọng trường (thường lấy g ≈ 9,8 m/s2) và độ cao h(t) tính bằng mét. 

Khi đó ta có: h(t) = 320 + 20t – 12 . 9,8 . t2 hay h(t) = –  4,9t2 + 20t + 320, đây là một hàm số bậc hai. 

Vật cách mặt đất không quá 100 m khi và chỉ khi h(t) ≤ 100, tức là – 4,9t2 + 20t + 320 ≤ 100 hay tương đương 4,9t2 – 20t – 220 ≥ 0 (1).

Xét tam thức f(t) = 4,9t2 – 20t – 220 có ∆' = (– 10)2 – 4,9 . (– 220) = 1 178 > 0 nên f(t) có hai nghiệm t1=1011784,9t2=10+11784,9.

Mà hệ số af = 1 > 0 nên ta có bảng xét dấu f(t):

t

– ∞               1011784,9                    10+11784,9               + ∞

f(t)

             +             0              –                0                +

Suy ra bất phương trình (1) có nghiệm t ≤ 1011784,9 hoặc t ≥ 10+11784,9.

Mà thời gian t > 0 nên t ≥ 10+11784,9≈ 9,05.

Vậy sau ít nhất khoảng 9,05 giây thì vật đó cách mặt đất không quá 100 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP