Câu hỏi:

13/07/2024 14,235

Giải các phương trình sau:

a) \(\sqrt {2{x^2} + x + 3} = 1 - x\);

b) \(\sqrt {3{x^2} - 13x + 14} = x - 3\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) \(\sqrt {2{x^2} + x + 3} = 1 - x\)

Bình phương hai vế của phương trình ta được

2x2 + x + 3 = 1 – 2x + x2.

Thu gọn ta được: x2 + 3x + 2 = 0 x2 + x + 2x + 2 = 0 x(x + 1) + 2(x + 1) = 0

(x + 1)(x + 2) = 0 x = – 1 hoặc x = – 2.

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = – 1 và x = – 2 đều thỏa mãn.

Vậy tập nghiệm của phương trình đã cho là S = {– 1; – 2}.

b) \(\sqrt {3{x^2} - 13x + 14} = x - 3\)

Bình phương hai vế của phương trình ta được

3x2 – 13x + 14 = x2 – 6x + 9.

Thu gọn ta được: 2x2 – 7x + 5 = 0.

Giải phương trình bậc hai này ta được x = 1 hoặc x = \(\frac{5}{2}\).

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị đều không thỏa mãn.

Vậy phương trình đã cho vô nghiệm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đổi: 200 m = 0,2 km, 50 m = 0,05 km.

Đặt CH = x (km) (x > 0).

Xét tam giác CHA vuông tại H, theo định lí Pythagore ta có:

CA2 = HA2 + HC2 = (0,05)2 + x2 = 0,0025 + x2

Suy ra CA = 0,0025+x2 hay quãng đường di chuyển của Minh từ vị trí A đến điểm gặp nhau C dài 0,0025+x2 km.

Vận tốc đi bộ của Minh là 5 km/h nên thời gian di chuyển của Minh từ vị trí A đến điểm gặp nhau C là: 0,0025+x25 (giờ).

Xét tam giác HAB vuông tại H, theo định lí Pythagore ta có:

AB2 = HB2 + HA2 HB2 = AB2 – HA2 = (0,2)2 – (0,05)2 = 0,0375

Suy ra HB = 1520.

Ta có: BC + CH = HB BC = HB – CH = 1520-x.

Do đó quãng đường di chuyển của Hùng từ B đến điểm gặp nhau C dài 1520-x km.

Vận tốc đạp xe của Hùng là 15 km/h nên thời gian di chuyển của Hùng từ B đến điểm gặp nhau là: 1520x15=1520x300 (giờ).

Để hai bạn gặp nhau mà không bạn nào phải chờ người kia thì thời gian di chuyển từ vị trí A đến C của Minh phải bằng thời gian di chuyển từ vị trí B đến C của Hùng.

Khi đó ta có phương trình: 0,0025+x25=1520x300    (1).

Giải phương trình (1) ta có:

(1) 600,0025+x2=1520x

Bình phương hai vế của phương trình trên ta được:

3600.(0,0025 + x2) = 15 – 4015x + 400x2

3200x2 + 4015x – 6 = 0

x = 1537160 hoặc x = 15+37160

Thay lần lượt các giá trị này vào phương trình (1) ta thấy cả hai giá trị đều thỏa mãn.

Lại có điều kiện của x là x > 0 nên ta chọn x = 15+37160 0,0254.

Suy ra BC = BH – CH 15200,02540,1682 km = 168,2 m.

Vậy vị trí C thỏa mãn yêu cầu đề bài là điểm cách B khoảng 168,2 m.

Lời giải

Hướng dẫn giải

Đặt AH = x, x > 0.

Xét tam giác AHD vuông tại H, theo định lí Pythagore ta có:

AD2 = AH2 + HD2 HD2 = AD2 – AH2 = 52 – x2 = 25 – x2

Suy ra HD = \(\sqrt {25 - {x^2}} \).

Ta có HC = HD + DC = \(\sqrt {25 - {x^2}} + 8\).

HB = AH + AB = x + 2

Xét tam giác HBC vuông tại H, theo định lí Pythagore ta có:

BC2 = HB2 + HC2

132 = (x + 2)2 + \({\left( {\sqrt {25 - {x^2}} + 8} \right)^2}\)

x2 + 4x + 4 + 25 – x2 + 16\(\sqrt {25 - {x^2}} \)+ 64 – 169 = 0

16\(\sqrt {25 - {x^2}} \) = – 4x + 76

4\(\sqrt {25 - {x^2}} \) = – x + 19

Để tính x, ta cần giải phương trình: 4\(\sqrt {25 - {x^2}} \) = – x + 19 (1).

Bình phương hai vế của phương trình (1) ta được:

16.(25 – x2) = x2 – 38x + 361

17x2 – 38x – 39 = 0  

x = 3 hoặc x = \( - \frac{{13}}{{17}}\).

Thay lần lượt các giá trị trên vào phương trình (1), ta thấy hai giá trị x = 3 và x = \( - \frac{{13}}{{17}}\) đều thỏa mãn.

Vì điều kiện của x là x > 0 nên ta chọn x = 3.

Do đó ta tính được AH = 3.

Suy ra HD = \(\sqrt {25 - {3^2}} = 4\).

HC = 4 + 8 = 12

HB = 3 + 2 = 5

Diện tích tam giác HAD là S1 = \(\frac{1}{2}\)HA . HD = \(\frac{1}{2}\). 3 . 4 = 6.

Diện tích tam giác HBC là S2 = \(\frac{1}{2}\)HB . HC = \(\frac{1}{2}\) . 5 . 12 = 30.

Vậy diện tích tứ giác ABCD là S = S2 – S1 = 30 – 6 = 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay