Câu hỏi:
13/07/2024 13,696Giải các phương trình sau:
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\);
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\);
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\);
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Hướng dẫn giải
a) \(\sqrt {6{x^2} + 13x + 13} = 2x + 4\)
Bình phương hai vế của phương trình ta được
6x2 + 13x + 13 = 4x2 + 16x + 16
⇔ 2x2 – 3x – 3 = 0
⇔ x = \(\frac{{3 - \sqrt {33} }}{4}\) hoặc x = \(\frac{{3 + \sqrt {33} }}{4}\).
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả hai giá trị x = \(\frac{{3 - \sqrt {33} }}{4}\) và x = \(\frac{{3 + \sqrt {33} }}{4}\) đều thỏa mãn.
Vậy tập nghiệm của phương trình là S = \(\left\{ {\frac{{3 - \sqrt {33} }}{4};\frac{{3 + \sqrt {33} }}{4}} \right\}\).
b) \(\sqrt {2{x^2} + 5x + 3} = - 3 - x\)
Bình phương hai vế của phương trình ta được
2x2 + 5x + 3 = 9 + 6x + x2
⇔ x2 – x – 6 = 0
⇔ x = – 2 hoặc x = 3.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn.
Vậy phương trình vô nghiệm.
c) \(\sqrt {3{x^2} - 17x + 23} = x - 3\)
Bình phương hai vế của phương trình ta được
3x2 – 17x + 23 = x2 – 6x + 9
⇔ 2x2 – 11x + 14 = 0
⇔ x = 2 hoặc x = \(\frac{7}{2}\).
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x = \(\frac{7}{2}\) thỏa mãn.
Vậy nghiệm của phương trình là x = \(\frac{7}{2}\).
d) \(\sqrt { - {x^2} + 2x + 4} = x - 2\)
Bình phương hai vế của phương trình ta được
– x2 + 2x + 4 = x2 – 4x + 4
⇔ – 2x2 + 6x = 0
⇔ – 2x(x – 3) = 0
⇔ x = 0 hoặc x = 3.
Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x = 3 thỏa mãn.
Vậy nghiệm của phương trình là x = 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
A. Các câu hỏi trong bài
Cho phương trình \(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \).
a) Bình phương hai vế phương trình để khử căn và giải phương trình nhận được.
b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không?
Câu 4:
Bác Việt sống và làm việc tại trạm hải đăng cách bờ biển 4 km. Hằng tuần bác chèo thuyền vào vị trí gần nhất trên bờ biển là bến Bính để nhận hàng hóa do cơ quan cung cấp. Tuần này, do trục trặc về vận chuyển nên toàn bộ số hàng vẫn đang nằm ở thôn Hoành, bên bờ biển cách bến Bính 9,25 km và sẽ được anh Nam vận chuyển trên con đường dọc bờ biển tới bến Bính bằng xe kéo. Bác Việt đã gọi điện thống nhất với anh Nam là họ sẽ gặp nhau ở vị trí nào đó giữa bến Bính và thôn Hoành để hai người có mặt tại đó cùng lúc, không mất thời gian chờ nhau. Giả thiết rằng đường dọc bờ biển là thẳng và bác Việt cũng di chuyển theo một đường thẳng để tới điểm hẹn. Tìm vị trí hai người hẹn gặp, biết rằng vận tốc của anh Nam là 5 km/h và của bác Việt là 4 km/h.
Câu 5:
B. Bài tập
Giải các phương trình sau:
a) ;
b) \(\sqrt {{x^2} + 2x - 3} = \sqrt { - 2{x^2} + 5} \);
c) \(\sqrt {2{x^2} + 3x - 3} = \sqrt { - {x^2} - x + 1} \);
d) \(\sqrt { - {x^2} + 5x - 4} = \sqrt { - 2{x^2} + 4x + 2} \).
Câu 6:
Giải các phương trình sau:
a) \(\sqrt {2{x^2} + x + 3} = 1 - x\);
b) \(\sqrt {3{x^2} - 13x + 14} = x - 3\).
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
75 câu trắc nghiệm Vectơ nâng cao (P1)
Bài tập Xác định tính hợp lí của dữ liệu trong bảng thống kê (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Số gần đúng và sai số có đáp án
Đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án - Đề 1
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Hàm số có đáp án
về câu hỏi!