Câu hỏi:

26/06/2022 27,274

Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 4 là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B.

Vì hai con xúc xắc là cân đối nên các kết quả có thể đồng khả năng.

Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.

Số phần tử không gian mẫu là: n(Ω) = 6 . 6 = 36.

Gọi biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 4”.

Các kết quả thuận lợi của A: (1; 1), (1; 2), (1; 3), (2; 1), (2; 2), (3; 1).

Do đó, n(A) = 6.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{36}} = \frac{1}{6}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gieo hai con xúc xắc cân đối nên kết quả xảy ra có thể đồng khả năng.

Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.

Do đó, số kết quả có thể xảy ra là: 6 . 6 = 36, hay n(Ω) = 36.

a) Gọi biến cố A: “Tổng số chấm trên hai con xúc xắc bằng 8”.

Có 8 = 2 + 6 = 6 + 2 = 3 + 5 = 5 + 3 = 4 + 4. Nên số kết quả thuận lợi với A là: 5 hay n(A) = 5.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{36}}.\)

b) Gọi biến cố B: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”.

Mỗi phần tử của B được tạo ra bởi một trong các trường hợp sau:

+ Nếu số chấm của xúc xắc thứ nhất là 1 thì số chấm xúc xắc thứ hai có thể từ 1 đến 6: có 6 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 2 thì số chấm xúc xắc thứ hai có thể từ 1 đến 5: có 5 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 3 thì số chấm xúc xắc thứ hai có thể từ 1 đến 4: có 4 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 4 thì số chấm xúc xắc thứ hai có thể từ 1 đến 3: có 3 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 5 thì số chấm xúc xắc thứ hai có thể từ 1 đến 2: có 2 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 6 thì số chấm xúc xắc thứ hai có thể là 1: có 1 cách.

Vì các trường hợp là rời nhau nên theo quy tắc cộng, số cách là: 6 + 5 + 4 + 3 + 2 + 1 = 21 cách, hay n(B) = 21.

Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: B.

Rút ngẫu nhiên 1 tấm thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30, có 30 cách rút, do đó n(Ω) = 30.

Gọi biến cố A: “Số trên tấm thẻ được rút ra chia hết cho 5”.

Các kết quả thuận lợi cho A là: 5; 10; 15; 20; 25; 30.

Do đó, n(A) = 6.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{30}} = \frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP