Câu hỏi:
11/07/2024 176,508
Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để:
a) Tổng số chấm trên hai con xúc xắc bằng 8;
b) Tổng số chấm trên hai con xúc xắc nhỏ hơn 8.
Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để:
a) Tổng số chấm trên hai con xúc xắc bằng 8;
b) Tổng số chấm trên hai con xúc xắc nhỏ hơn 8.
Câu hỏi trong đề: Bài tập Cuối chương 9 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Gieo hai con xúc xắc cân đối nên kết quả xảy ra có thể đồng khả năng.
Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.
Do đó, số kết quả có thể xảy ra là: 6 . 6 = 36, hay n(Ω) = 36.
a) Gọi biến cố A: “Tổng số chấm trên hai con xúc xắc bằng 8”.
Có 8 = 2 + 6 = 6 + 2 = 3 + 5 = 5 + 3 = 4 + 4. Nên số kết quả thuận lợi với A là: 5 hay n(A) = 5.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{36}}.\)
b) Gọi biến cố B: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”.
Mỗi phần tử của B được tạo ra bởi một trong các trường hợp sau:
+ Nếu số chấm của xúc xắc thứ nhất là 1 thì số chấm xúc xắc thứ hai có thể từ 1 đến 6: có 6 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 2 thì số chấm xúc xắc thứ hai có thể từ 1 đến 5: có 5 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 3 thì số chấm xúc xắc thứ hai có thể từ 1 đến 4: có 4 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 4 thì số chấm xúc xắc thứ hai có thể từ 1 đến 3: có 3 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 5 thì số chấm xúc xắc thứ hai có thể từ 1 đến 2: có 2 cách.
+ Nếu số chấm của xúc xắc thứ nhất là 6 thì số chấm xúc xắc thứ hai có thể là 1: có 1 cách.
Vì các trường hợp là rời nhau nên theo quy tắc cộng, số cách là: 6 + 5 + 4 + 3 + 2 + 1 = 21 cách, hay n(B) = 21.
Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B.
Rút ngẫu nhiên 1 tấm thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30, có 30 cách rút, do đó n(Ω) = 30.
Gọi biến cố A: “Số trên tấm thẻ được rút ra chia hết cho 5”.
Các kết quả thuận lợi cho A là: 5; 10; 15; 20; 25; 30.
Do đó, n(A) = 6.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{30}} = \frac{1}{5}\).
Lời giải
Hướng dẫn giải
Vì mỗi hộp có chứa 5 tấm thẻ nên rút từ hộp I một tấm thẻ thì có 5 cách, từ hộp II tương tự cũng có 5 cách.
Do đó, số khả năng xảy ra khi rút mỗi hộp 1 thẻ là: 5 . 5 = 25, hay n(Ω) = 25.
(Vì ta thực hiện liên tiếp 2 công đoạn, rút từ hộp I, rồi rút hộp II nên áp dụng quy tắc nhân).
Không gian mẫu được mô tả trong bảng sau:
1 |
2 |
3 |
4 |
5 |
|
1 |
11 |
12 |
13 |
14 |
15 |
2 |
21 |
22 |
23 |
24 |
25 |
3 |
31 |
32 |
33 |
34 |
35 |
4 |
41 |
42 |
43 |
44 |
45 |
5 |
51 |
52 |
53 |
54 |
55 |
Gọi biến cố A: “Thẻ rút ra từ hộp II mang số lớn hơn số trên thẻ rút ra từ hộp I”.
Khi đó, A = {12; 13; 14; 15; 23; 24; 25; 34; 35; 45}.
⇒ n(A) = 10.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{25}} = \frac{2}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.