Câu hỏi:

11/07/2024 9,288

Gieo một đồng xu cân đối liên tiếp bốn lần.

a) Vẽ sơ đồ hình cây mô tả không gian mẫu.

b) Tính xác suất để trong bốn lần gieo đó có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Đồng xu cân đối nên các kết quả có thể là đồng khả năng.

Kí hiệu S và N tương ứng là đồng xu ra mặt sấp và đồng xu ra mặt ngửa.

Theo bài ra ta có sơ đồ hình cây mô tả không gian mẫu như sau:

Media VietJack

Do đó, n(Ω) = 16.

b) Gọi biến cố A: “Trong bốn lần gieo đó có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa”.

Theo sơ đồ hình cây ở câu a, ta có:

A = {SSNN; SNSN; SNNS; NSSN; NSNS; NNSS}.

Do đó, n(A) = 6.

Vậy \(P\left( G \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{16}} = \frac{3}{8}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gieo hai con xúc xắc cân đối nên kết quả xảy ra có thể đồng khả năng.

Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.

Do đó, số kết quả có thể xảy ra là: 6 . 6 = 36, hay n(Ω) = 36.

a) Gọi biến cố A: “Tổng số chấm trên hai con xúc xắc bằng 8”.

Có 8 = 2 + 6 = 6 + 2 = 3 + 5 = 5 + 3 = 4 + 4. Nên số kết quả thuận lợi với A là: 5 hay n(A) = 5.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{5}{{36}}.\)

b) Gọi biến cố B: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”.

Mỗi phần tử của B được tạo ra bởi một trong các trường hợp sau:

+ Nếu số chấm của xúc xắc thứ nhất là 1 thì số chấm xúc xắc thứ hai có thể từ 1 đến 6: có 6 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 2 thì số chấm xúc xắc thứ hai có thể từ 1 đến 5: có 5 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 3 thì số chấm xúc xắc thứ hai có thể từ 1 đến 4: có 4 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 4 thì số chấm xúc xắc thứ hai có thể từ 1 đến 3: có 3 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 5 thì số chấm xúc xắc thứ hai có thể từ 1 đến 2: có 2 cách.

+ Nếu số chấm của xúc xắc thứ nhất là 6 thì số chấm xúc xắc thứ hai có thể là 1: có 1 cách.

Vì các trường hợp là rời nhau nên theo quy tắc cộng, số cách là: 6 + 5 + 4 + 3 + 2 + 1 = 21 cách, hay n(B) = 21.

Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}.\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: B.

Rút ngẫu nhiên 1 tấm thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30, có 30 cách rút, do đó n(Ω) = 30.

Gọi biến cố A: “Số trên tấm thẻ được rút ra chia hết cho 5”.

Các kết quả thuận lợi cho A là: 5; 10; 15; 20; 25; 30.

Do đó, n(A) = 6.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{30}} = \frac{1}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP