Bài tập Cuối chương 9 có đáp án
187 người thi tuần này 4.6 1.1 K lượt thi 10 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: D.
Phép thử là lấy ngẫu nhiên một viên bi từ hộp gồm bốn loại bi: bi xanh, bi đỏ, bi trắng và bi vàng.
Biến cố E: “Lấy được viên bi đỏ”, biến cố này không xảy ra khi lấy được bi xanh, hoặc bi trắng, hoặc bi vàng.
Vậy biến cố đối của E là \(\overline E \): “Lấy được viên bi vàng hoặc bi trắng hoặc bi xanh”.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B.
Rút ngẫu nhiên 1 tấm thẻ từ một hộp có 30 tấm thẻ được đánh số từ 1 đến 30, có 30 cách rút, do đó n(Ω) = 30.
Gọi biến cố A: “Số trên tấm thẻ được rút ra chia hết cho 5”.
Các kết quả thuận lợi cho A là: 5; 10; 15; 20; 25; 30.
Do đó, n(A) = 6.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{30}} = \frac{1}{5}\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: B.
Vì hai con xúc xắc là cân đối nên các kết quả có thể đồng khả năng.
Gieo một con xúc xắc, các kết quả có thể xảy ra là 1, 2, 3, 4, 5, 6 chấm.
Số phần tử không gian mẫu là: n(Ω) = 6 . 6 = 36.
Gọi biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 4”.
Các kết quả thuận lợi của A: (1; 1), (1; 2), (1; 3), (2; 1), (2; 2), (3; 1).
Do đó, n(A) = 6.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{36}} = \frac{1}{6}\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A.
Tổng số bạn trong tổ là: 4 + 3 = 7 (bạn).
Phép thử là chọn ngẫu nhiên 2 bạn trong 7 bạn của tổ.
Mỗi cách chọn 2 bạn trong 7 bạn chính là một tổ hợp chập 2 của 7, do đó, số cách chọn 2 bạn trong tổ để tham gia đội làm báo cáo của lớp là \(C_7^2 = 21\).
Khi đó, số phần tử của không gian mẫu là n(Ω) = 21.
Gọi biến cố A: “Hai bạn được chọn có một bạn nam và một bạn nữ”.
Mỗi phần tử của A được hình thành từ hai công đoạn.
Công đoạn 1. Chọn 1 bạn nam từ 3 bạn nam, có \(C_3^1 = 3\) cách chọn.
Công đoạn 2. Chọn 1 bạn nữ từ 4 bạn nữ, có \(C_4^1\) = 4 cách chọn.
Theo quy tắc nhân, có 3 . 4 = 12 cách chọn, hay n(A) = 12 (phần tử).
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{21}} = \frac{4}{7}\).
Lời giải
Hướng dẫn giải
a) Tổng số thẻ là 7 + 5 + 2 = 14 (thẻ).
Phép thử là rút ngẫu nhiên 1 tấm thẻ trong hộp gồm 14 thẻ trên.
Kí hiệu: X là màu xanh, Đ là màu đỏ, V là màu vàng.
Không gian mẫu: Ω = {X1; X2; X3; X4; X5; X6; X7; Đ1; Đ2; Đ3; Đ4; Đ5; V1; V2}
⇒ n(Ω) = 14.
b) Biến cố A: “Rút ra được thẻ màu đỏ hoặc màu vàng”.
Do đó, A = {Đ1; Đ2; Đ3; Đ4; Đ5; V1; V2}.
Biến cố B: “Rút ra được thẻ mang số hoặc là 2 hoặc là 3”.
Do đó, B = {X2; X3; Đ2; Đ3; V2}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
225 Đánh giá
50%
40%
0%
0%
0%