Câu hỏi:
11/07/2024 6,686Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Phép thử là chọn ngẫu nhiên 4 viên bi từ túi gồm 10 viên bi (4 viên bi đỏ và 6 viên bi xanh).
Chọn 4 viên bi từ 10 viên bi, thì số cách chọn là: \(C_{10}^4\) = 210 (cách).
Do đó, số phần tử của không gian mẫu là n(Ω) = 210.
Xét biến cố A, để có cả bi đỏ và bi xanh thì ta có các trường hợp sau:
+ Trường hợp 1: chọn 1 bi xanh trong 6 bi xanh, 3 bi đỏ trong 4 bi đỏ, số cách chọn là: \(C_6^1.C_4^3 = \) 24.
+ Trường hợp 2: chọn 2 bi xanh trong 6 bi xanh, 2 bi đỏ trong 4 bi đỏ, số cách chọn là: \(C_6^2.C_4^2\) = 90.
+ Trường hợp 3: chọn 3 bi xanh trong 6 bi xanh, 1 bi đỏ trong 4 bi đỏ, số cách chọn là: \(C_6^3.C_4^1\) = 80.
Do các trường hợp là rời nhau nên n(A) = 24 + 90 + 80 = 194.
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{194}}{{210}} = \frac{{97}}{{105}}.\)
Từ đó suy ra, P(\(\overline A \)) = 1 – P(A) = \(1 - \frac{{97}}{{105}} = \frac{8}{{105}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gieo đồng thời hai con xúc xắc cân đối. Tính xác suất để:
a) Tổng số chấm trên hai con xúc xắc bằng 8;
b) Tổng số chấm trên hai con xúc xắc nhỏ hơn 8.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Gieo một đồng xu cân đối liên tiếp bốn lần.
a) Vẽ sơ đồ hình cây mô tả không gian mẫu.
b) Tính xác suất để trong bốn lần gieo đó có hai lần xuất hiện mặt sấp và hai lần xuất hiện mặt ngửa.
về câu hỏi!