Câu hỏi:

27/06/2022 831 Lưu

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ như sau

Cho hàm số f(x)  có bảng biến thiên như hình vẽ như sau (ảnh 1)

Hàm số đã cho nghịch biến trên khoảng nào dưới đây

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - 2;0} \right),\left( {2; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A

\(\int {{3^{ - x}}dx} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C.\)

Câu 2

Lời giải

Đáp án C

Điều kiện: \(x > 0\)

Ta có: \({\log _3}^2\left( {3x} \right) - \left( {m + 2} \right){\log _3}x + m - 2 = 0 \Leftrightarrow {\log _3}^2x - m{\log _3}x + m - 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\log }_3}x = 1}\\{{{\log }_3}x = m - 1}\end{array}} \right.\)

Phương trình: \({\log _3}x = 1 \Leftrightarrow x = 3 \in \left[ {\frac{1}{3};3} \right]\)

Để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ {\frac{1}{3};3} \right]\) thì phương trình:

\({\log _3}x = m - 1\) có 1 nghiệm thuộc \(\left[ {\frac{1}{3};3} \right).\)

\( \Rightarrow {\log _3}\frac{1}{3} \le {\log _3}x = m - 1 < {\log _3}3 \Leftrightarrow  - 1 \le m - 1 < 1 \Leftrightarrow 0 \le m < 2 \Rightarrow m \in \left[ {0;2} \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP