Câu hỏi:

27/06/2022 1,493 Lưu

Cho biểu thức \(P = \sqrt[3]{{x.\sqrt[4]{{{x^3}\sqrt x }}}},\) với \(x > 0.\) Mệnh đề nào dưới đây đúng?

A. \(P = {x^{\frac{1}{2}}}.\)                      
B. \(P = {x^{\frac{7}{{12}}}}.\)     
C. \(P = {x^{\frac{5}{8}}}.\)    
D. \(P = {x^{\frac{7}{{24}}}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

\(\sqrt[3]{{x\sqrt[4]{{{x^{3 + \frac{1}{2}}}}}}} = \sqrt[3]{{x.{x^{\frac{7}{8}}}}} = \sqrt[3]{{{x^{\frac{{15}}{8}}}}} = {x^{\frac{5}{8}}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \( - \frac{{{3^{ - x}}}}{{\ln 3}} + C.\)   
B. \( - {3^{ - x}} + C.\)          
C. \({3^{ - x}}\ln 3 + C.\)                        
D. \(\frac{{{3^{ - x}}}}{{\ln 3}} + C.\)

Lời giải

Đáp án A

\(\int {{3^{ - x}}dx} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C.\)

Lời giải

Đáp án D

Ta có \(I = F\left( b \right) - F\left( a \right) = - \frac{7}{2}.\)

Câu 3

A. \(\left( {0;2} \right).\)                              
B. \(\left[ {0;2} \right].\)        
C. \(\left[ {0;2} \right).\)                       
D. \(\left( {2; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{3}{{13}}.\)                                  
B. \(\frac{5}{6}.\)     
C. \( - \frac{5}{6}.\)  
D. \( - \frac{3}{{13}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(1 < T < 2.\)         
B. \(\frac{1}{2} < T < \frac{2}{3}.\)           
C. \( - 2 < T < 0.\)    
D. \(0 < T < \frac{1}{2}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{1}{3}.\)     
B. \( - 3.\)                   
C. 3.                          
D. \( - \frac{1}{3}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP