Câu hỏi:

27/06/2022 128

Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường chéo nhau \({d_1}\)\({d_2}\) biết \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 2}}{{ - 1}}\)\({d_2}:\left\{ \begin{array}{l}x = t\\y = 3\\z = - 2 + t\end{array} \right.\).

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Gọi \(\Delta \) là đường vuông góc chung của \({d_1}\)\({d_2}\)

Vectơ chỉ phương của đường thẳng \({d_1}\)\({d_2}\) lần lượt là \(\overrightarrow {{u_1}} \left( {1; - 1; - 1} \right)\)\(\overrightarrow {{u_2}} \left( {1;0;1} \right).\)

Suy ra \(\overrightarrow {{u_\Delta }} = \left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( { - 1; - 2;1} \right)\)

Gọi \(A\left( {2 + t;1 - t;2 - t} \right) \in {d_1}\)\(B\left( {u;3; - 2 + u} \right) \in {d_2}\) suy ra \(\overrightarrow {AB} \left( {u - t - 2;2 + t;u + t - 4} \right)\)

Giải: \(\overrightarrow {AB}  = k.\overrightarrow {{u_\Delta }} = k\left( { - 1; - 2;1} \right) \Leftrightarrow \left\{ \begin{array}{l}u - t - 2 = - k\\2 + t = - 2k\\u + t - 4 = k\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}u = 3\\t = 0\\k = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {2;1;2} \right)\\B\left( {3;3;1} \right)\end{array} \right..\)

Phương trình đường thẳng AB\(\left\{ \begin{array}{l}x = 2 + t\\y = 1 + 2t\\z = 2 - t\end{array} \right..\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình \(\log _3^2\left( {3x} \right) - \left( {m + 2} \right){\log _3}x + m - 2 = 0\) (m là tham số thực). Tập hợp tất cả các giá trị của m để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ {\frac{1}{3};3} \right]\)

Xem đáp án » 27/06/2022 6,175

Câu 2:

Tất cả các nguyên hàm của hàm số \(f\left( x \right) = {3^{ - x}}\)

Xem đáp án » 27/06/2022 6,145

Câu 3:

Biết \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\)\(2F\left( a \right) - 7 = 2F\left( b \right)\). Tính tích phân \(I = \int\limits_a^b {f\left( x \right)} dx.\)

Xem đáp án » 27/06/2022 4,900

Câu 4:

Cho hàm số \(f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) được cho như hình vẽ bên. Hàm số \(y = \left| {f\left( x \right) + \frac{1}{2}{x^2} - f\left( 0 \right)} \right|\) có nhiều nhất bao nhiêu điểm cực trị trong khoảng \(\left( { - 2;3} \right)\)?

Cho hàm số f(x)  có đồ thị hàm số y=f'(x)  được cho như hình vẽ bên (ảnh 1)

Xem đáp án » 27/06/2022 3,696

Câu 5:

Cho các số thực dương a, b thỏa mãn \({\log _4}a = {\log _6}b = {\log _9}\left( {4a - 5b} \right) - 1.\) Đặt \(T = \frac{b}{a}.\) Khẳng định nào sau đây đúng?

Xem đáp án » 27/06/2022 2,185

Câu 6:

Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

Xem đáp án » 27/06/2022 1,474

Câu 7:

Một mảnh giấy hình quạt như hình vẽ có bán kính \(AB = AC = 8\,\,cm.\) Người ta dán mép ABAC lại với nhau để được một hình nón đỉnh A. Biết độ dài cung BC bằng \(8\pi \sqrt 3 \,\,cm,\) tính thể tích V của khối nón thu được (xem phần giấy dán không đáng kể) 

Một mảnh giấy hình quạt như hình vẽ có bán kính AB = AC = 8cm (ảnh 1)

Xem đáp án » 27/06/2022 1,265
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua