Cho khối lăng trụ \(ABC.A'B'C'\) có thể tích bằng 1. Gọi M, N lần lượt là trung điểm các đoạn thẳng \(AA',BB'.\) Mặt phẳng \(\left( {CMN} \right)\) cắt các đường thẳng \(C'A',C'B'\) lần lượt tại P, Q. Thể tích của khối đa diện lồi \(AA'P.BB'Q\) bằng
Quảng cáo
Trả lời:
Đáp án B
Dễ thấy \(AP,BQ,CC'\) đồng quy nên đa diện lồi \(ABCPQC'\) là khối chóp cụt.

Đặt \[{{\rm{S}}_{ABC}} = S\], chiều cao lăng trụ là h thì \[{S_{C'PQ}} = 4S\] ta có \(Sh = 1\) và thể tích chóp cụt \(ABCPQC'\) là:
\({V_{ABCPQC'}} = \frac{1}{3}\left( {S + \sqrt {S.4S} + 4S} \right).h\)
\( = \frac{1}{3}.7.S.h = \frac{7}{3} \Rightarrow {V_{AA'PBB'Q}} = \frac{7}{3} - 1 = \frac{4}{3}.\)Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
\(\int {{3^{ - x}}dx} = - \frac{{{3^{ - x}}}}{{\ln 3}} + C.\)
Lời giải
Đáp án C
Điều kiện: \(x > 0\)
Ta có: \({\log _3}^2\left( {3x} \right) - \left( {m + 2} \right){\log _3}x + m - 2 = 0 \Leftrightarrow {\log _3}^2x - m{\log _3}x + m - 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{{\log }_3}x = 1}\\{{{\log }_3}x = m - 1}\end{array}} \right.\)
Phương trình: \({\log _3}x = 1 \Leftrightarrow x = 3 \in \left[ {\frac{1}{3};3} \right]\)
Để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn \(\left[ {\frac{1}{3};3} \right]\) thì phương trình:
\({\log _3}x = m - 1\) có 1 nghiệm thuộc \(\left[ {\frac{1}{3};3} \right).\)
\( \Rightarrow {\log _3}\frac{1}{3} \le {\log _3}x = m - 1 < {\log _3}3 \Leftrightarrow - 1 \le m - 1 < 1 \Leftrightarrow 0 \le m < 2 \Rightarrow m \in \left[ {0;2} \right)\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.