Câu hỏi:
12/07/2024 5,780
Trên quầy còn 4 vé xổ số khác nhau. Một khách hàng có bao nhiêu lựa chọn mua một số vé trong số các vé xổ số đó? Tính cả trường hợp mua không vé, tức là không mua vé nào.
Trên quầy còn 4 vé xổ số khác nhau. Một khách hàng có bao nhiêu lựa chọn mua một số vé trong số các vé xổ số đó? Tính cả trường hợp mua không vé, tức là không mua vé nào.
Câu hỏi trong đề: Bài tập Toán 10 Bài 3. Nhị thức Newtơn có đáp án !!
Quảng cáo
Trả lời:
Số lựa chọn mua một số vé trong số các vé xổ số đó là:
\(C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4\) (lựa chọn).
Mà theo công thức nhị thức Newton, ta có:
\(C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4 = C_4^0{.1^4} + C_4^1{.1^3}.1 + C_4^2{.1^2}{.1^2} + C_4^3{.1^3}.1 + C_4^4.1 = {\left( {1 + 1} \right)^4} = {2^4} = 16\).
Vậy khách hàng có 16 lựa chọn mua một số vé trong số các vé xổ số đó.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: (3x – 2)5 = \( = C_5^0.{\left( {3x} \right)^5} + C_5^1.{\left( {3x} \right)^4}.\left( { - 2} \right) + C_5^2.{\left( {3x} \right)^3}{\left( { - 2} \right)^2} + C_5^3.{\left( {3x} \right)^2}.{\left( { - 2} \right)^3} + C_5^4.{\left( {3x} \right)^1}{\left( { - 2} \right)^4} + C_5^5.{\left( { - 2} \right)^5}\)
= 243x5 – 810x4 + 1080x3 – 720x2 + 240x – 32
Suy ra (3x – 2)5 = 243x5 – 810x4 + 1080x3 – 720x2 + 240x – 32.
Khi đó hệ số của x3 trong khai triển là 1 080.
Vậy hệ số của x3 trong khai triển là 1 080.
Lời giải
a) Áp dụng khai triển nhị thức Newton với a = 3x và b = y, ta có:
(3x + y)4 = \(C_4^0.{\left( {3x} \right)^4} + C_4^1.{\left( {3x} \right)^3}.y + C_4^2.{\left( {3x} \right)^2}.{y^2} + C_4^3.{\left( {3x} \right)^1}.{y^3} + C_4^4.{y^4}\)
\( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).
Vậy (3x + y)4 \( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).
b) Áp dụng khai triển nhị thức Newton với a = x và b = , ta có:
\({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5 + \(C_5^1\)x4.\({\left( { - \sqrt 2 } \right)^1}\)+ \(C_5^2\)x3\({\left( { - \sqrt 2 } \right)^2}\) + \(C_5^3\)x2\({\left( { - \sqrt 2 } \right)^3}\) + \(C_5^4\)x\({\left( { - \sqrt 2 } \right)^4}\) + \(C_5^5\)\({\left( { - \sqrt 2 } \right)^5}\)
= x5 – \(5\sqrt 2 \)x4 + 20x3 – \(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).
Vậy \({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5 – \(5\sqrt 2 \)x4 + 20x3 – \(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.