Câu hỏi:

12/07/2024 4,631

Cho A = {a1; a2; a3; a4; a5} là một tập hợp có 5 phần tử. Chứng minh rằng số tập hợp con có số lẻ (1; 3; 5) phần tử của A bằng số tập hợp con có số chẵn (0; 2; 4) phần tử của A.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập con có 0 phần tử của tập hợp A gồm 1 tập là tập .

Tập con có 1 phần tử của tập hợp A gồm 5 tập là các tập hợp {a1}, {a2}, {a3}, {a4}, {a5}.

Tập con có 2 phần tử của tập hợp A gồm 10 tập là các tập hợp {a1; a2}, {a1; a3}, {a1; a4}, {a1; a5}, {a2; a3}, {a2; a4}, {a2; a5}, {a3; a4}, {a3; a5}, {a4; a5}.

Tập con có 3 phần tử của tập hợp A gồm 10 tập là các tập hợp {a1; a2; a3}, {a1; a2; a4}, {a1; a2; a5}, {a1; a3; a4}, {a1; a3; a5}, {a1; a4; a5}, {a2; a3; a4}, {a2; a3; a5}, {a2; a4; a5}, {a3; a4; a5}.

Số tập con có 4 phần tử của tập hợp A gồm 5 tập là các tập hợp {a1; a2; a3; a4}, {a1; a2; a4; a5}, {a1; a2; a3; a5}, {a1; a3; a4; a5}, {a2; a3; a4; a5}.

Số tập con có 5 phần tử của tập hợp A gồm 1 tập là tập A = {a1; a2; a3; a4; a5}.

Suy ra số tập hợp con có số lẻ (1; 3; 5) phần tử của A là 5 + 10 + 1 = 16 tập, số tập hợp con có số chẵn (0; 4; 6) phần tử của A là 1 + 10 + 5 = 16 tập.

Vậy số tập hợp con có số lẻ (1; 3; 5) phần tử của A bằng số tập hợp con có số chẵn (0; 2; 4) phần tử của A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm hệ số của x3 trong khai triển (3x – 2)5.

Xem đáp án » 12/07/2024 21,217

Câu 2:

Sử dụng công thức nhị thức Newton, khai triển các biểu thức sau:

a) (3x + y)4;

b) \({\left( {x - \sqrt 2 } \right)^5}\).

Xem đáp án » 12/07/2024 7,602

Câu 3:

Khai triển và rút gọn các biểu thức sau:

a) \({\left( {2 + \sqrt 2 } \right)^4}\);

b) \({\left( {2 + \sqrt 2 } \right)^4} + {\left( {2 - \sqrt 2 } \right)^4}\);

c) \({\left( {1 - \sqrt 3 } \right)^5}\).

Xem đáp án » 12/07/2024 5,247

Câu 4:

Trên quầy còn 4 vé xổ số khác nhau. Một khách hàng có bao nhiêu lựa chọn mua một số vé trong số các vé xổ số đó? Tính cả trường hợp mua không vé, tức là không mua vé nào.

Xem đáp án » 12/07/2024 3,327

Câu 5:

Chứng minh rằng \(C_5^0 - C_5^1 + C_5^2 - C_5^3 + C_5^4 - C_5^5 = 0\).

Xem đáp án » 12/07/2024 3,137

Câu 6:

Khai triển các biểu thức sau:

a) (x – 2)4;

b) (x + 2y)5.

Xem đáp án » 12/07/2024 2,996

Bình luận


Bình luận