Câu hỏi:

12/07/2024 7,200

Cho A = {a1; a2; a3; a4; a5} là một tập hợp có 5 phần tử. Chứng minh rằng số tập hợp con có số lẻ (1; 3; 5) phần tử của A bằng số tập hợp con có số chẵn (0; 2; 4) phần tử của A.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập con có 0 phần tử của tập hợp A gồm 1 tập là tập .

Tập con có 1 phần tử của tập hợp A gồm 5 tập là các tập hợp {a1}, {a2}, {a3}, {a4}, {a5}.

Tập con có 2 phần tử của tập hợp A gồm 10 tập là các tập hợp {a1; a2}, {a1; a3}, {a1; a4}, {a1; a5}, {a2; a3}, {a2; a4}, {a2; a5}, {a3; a4}, {a3; a5}, {a4; a5}.

Tập con có 3 phần tử của tập hợp A gồm 10 tập là các tập hợp {a1; a2; a3}, {a1; a2; a4}, {a1; a2; a5}, {a1; a3; a4}, {a1; a3; a5}, {a1; a4; a5}, {a2; a3; a4}, {a2; a3; a5}, {a2; a4; a5}, {a3; a4; a5}.

Số tập con có 4 phần tử của tập hợp A gồm 5 tập là các tập hợp {a1; a2; a3; a4}, {a1; a2; a4; a5}, {a1; a2; a3; a5}, {a1; a3; a4; a5}, {a2; a3; a4; a5}.

Số tập con có 5 phần tử của tập hợp A gồm 1 tập là tập A = {a1; a2; a3; a4; a5}.

Suy ra số tập hợp con có số lẻ (1; 3; 5) phần tử của A là 5 + 10 + 1 = 16 tập, số tập hợp con có số chẵn (0; 4; 6) phần tử của A là 1 + 10 + 5 = 16 tập.

Vậy số tập hợp con có số lẻ (1; 3; 5) phần tử của A bằng số tập hợp con có số chẵn (0; 2; 4) phần tử của A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: (3x – 2)5 = \( = C_5^0.{\left( {3x} \right)^5} + C_5^1.{\left( {3x} \right)^4}.\left( { - 2} \right) + C_5^2.{\left( {3x} \right)^3}{\left( { - 2} \right)^2} + C_5^3.{\left( {3x} \right)^2}.{\left( { - 2} \right)^3} + C_5^4.{\left( {3x} \right)^1}{\left( { - 2} \right)^4} + C_5^5.{\left( { - 2} \right)^5}\)

= 243x5 – 810x4 + 1080x3 – 720x2 + 240x – 32

Suy ra (3x – 2)5 = 243x5 – 810x4 + 1080x3 – 720x2 + 240x – 32.

Khi đó hệ số của x3 trong khai triển là 1 080.

Vậy hệ số của x3 trong khai triển là 1 080.

Lời giải

a) Áp dụng khai triển nhị thức Newton với a = 3x và b = y, ta có:

(3x + y)4 = \(C_4^0.{\left( {3x} \right)^4} + C_4^1.{\left( {3x} \right)^3}.y + C_4^2.{\left( {3x} \right)^2}.{y^2} + C_4^3.{\left( {3x} \right)^1}.{y^3} + C_4^4.{y^4}\)

\( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).

Vậy (3x + y)4 \( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\).

b) Áp dụng khai triển nhị thức Newton với a = x và b = 2, ta có:

\({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5 + \(C_5^1\)x4.\({\left( { - \sqrt 2 } \right)^1}\)+ \(C_5^2\)x3\({\left( { - \sqrt 2 } \right)^2}\) + \(C_5^3\)x2\({\left( { - \sqrt 2 } \right)^3}\) + \(C_5^4\)x\({\left( { - \sqrt 2 } \right)^4}\) + \(C_5^5\)\({\left( { - \sqrt 2 } \right)^5}\)

= x5\(5\sqrt 2 \)x4 + 20x3\(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).

Vậy \({\left( {x - \sqrt 2 } \right)^5}\) = \(C_5^0\)x5\(5\sqrt 2 \)x4 + 20x3\(20\sqrt 2 \)x2 + 20x – \(4\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay