Bài tập Toán 10 Bài 2. Hoán vị, chỉnh hợp và tổ hợp có đáp án
69 người thi tuần này 4.6 1.4 K lượt thi 18 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
*) Bằng cách sử dụng quy tắc nhân, ta có:
Cách để chọn 5 cầu thủ từ 11 cầu thủ để thực hiện đá luân lưu được chia làm 5 giai đoạn như sau:
+ Giai đoạn thứ nhất: Chọn cho vị trí cầu thủ thứ nhất có 11 cách chọn.
+ Giai đoạn thứ hai: Ứng với cầu thủ thứ nhất, có 10 cách chọn cho vị trí cầu thủ thứ hai.
+ Giai đoạn thứ ba: Ứng với cầu thủ thứ nhất và cầu thủ thứ hai, có 9 cách chọn cho vị trí cầu thủ thứ ba.
+ Giai đoạn thứ tư: Ứng với ba cầu thủ đã chọn, có 8 cách chọn cho vị trí cầu thủ thứ tư.
+ Giai đoạn thứ năm: Ứng với bốn cầu thủ đã chọn, có 7 cách chọn cho vị trí cầu thủ thứ năm.
Theo quy tắc nhân ta có: 11.10.9.8.7 = 55 440 cách chọn.
Vậy có 55 440 cách chọn 5 cầu thủ từ 11 cầu thủ để đá luân lưu.
Ngoài ra ta có thể chia công việc chọn 5 cầu thủ từ 11 cầu thủ để đá luân lưu thành hai giai đoạn:
+ Giai đoạn 1: Chọn 5 cầu thủ từ 11 cầu thủ, có x cách chọn.
+ Giai đoạn 2: Ứng với 5 cầu thủ vừa chọn ra, cách xếp 5 cầu thủ đế đá luân lưu là:
- Vị trí đá thứ nhất: có 5 cách chọn.
- Vị trí đá thứ hai: có 4 cách chọn.
- Vị trí đá thứ ba: có 3 cách chọn.
- Vị trí đá thứ 4: có 2 cách chọn.
- Vị trí đá thứ 5: có 1 cách chọn.
Do đó có 5.4.3.2.1 = 120 cách để xếp 5 cầu thủ được chọn ra đá luân lưu.
Áp dụng quy tắc nhân ta có x.120 cách chọn 5 cầu thủ từ 11 cầu thủ để đá luân lưu. Hay ta có x.120 = 55 440.
⇔ x = 55 440 : 120 = 420 cách.
Vậy có 420 cách chọn ra 5 cầu thủ trong 11 cầu thủ.
+) Sau bài học này ta có thể sử dụng công thức sau để giải nhanh hơn:
Số cách chọn 5 cầu thủ từ 11 cầu thủ là tổ hợp chập 5 của 11: 420 cách.
Số cách chọn 5 cầu thủ để đá luân lưu: .5! = = 55 440 cách.Lời giải
a) Các kết quả bốc thăm có thể xảy ra là:
Việc thuyết minh về sản phẩm của mỗi đội thì thứ tự trình bày có thể có các kết quả sau:
A – B – C;
A – C – B;
B – A – C;
B – C – A;
C – A – B;
C – B – A.
Vậy các kết quả có thể xảy ra là: {A – B – C; A – C – B; B – A – C; B – C – A; C – A – B; C – B – A}.
b) Có 6 kết quả có thể xảy ra về thứ tự thuyết trình của ba đội A, B, C.
Ngoài việc đếm lần lượt từng kết quả, có cách tìm nhanh hơn đó là sử dụng hoán vị. Mỗi cách xếp ba đội A, B, C theo một thứ tự (hay nói cách khác là đổi thứ tự của ba đội) được gọi là một hoán vị các phần tử đó nên ta có 3! = 6 kết quả có thể xảy ra về thứ tự thuyết trình của ba đội A, B, C.
Lời giải
Sắp xếp chỗ ngồi cho 6 thành viên vào 6 ghế là hoán vị của 6 thành viên. Do đó số cách sắp xếp chỗ ngồi cho các thành viên của nhóm là:
P6 = 6! = 6.5.4.3.2.1 = 720 cách.
Vậy có tất cả 720 cách xếp chỗ ngồi cho các thành viên của nhóm.
Lời giải
Thứ hàng của 14 đội bóng tham gia mùa giải là hoán vị của 14 đội. Do đó các khả năng về thứ hạng đội bóng khi mùa giải kết thúc là:
P14 = 14! = 14.13.12.11.10.9.8.7.6.5.4.3.2.1 ≈ 8,7.1010.
Vậy có tất cả 8,7.1010 khả năng về thứ hạng của các đội bóng khi mùa giải kết thúc.Lời giải
a) Ta có ít nhất bốn cách chọn và cắm cờ để báo bốn tín hiệu khác nhau như sau:
Đ – T – X;
Đ – T – V;
Đ – T – C;
T – X – V.
Có thể có các cách chọn cờ khác để báo tín hiệu khác.
b) Số cách chọn 3 lá cờ từ 5 lá cờ có màu như trên để làm đèn báo tín hiệu được chia làm 3 giai đoạn:
- Giai đoạn thứ nhất: Chọn lá cờ thứ nhất, có 5 cách chọn.
- Giai đoạn thứ hai: Ứng với lá cờ thứ nhất, có 4 cách chọn lá cờ thứ hai.
- Giai đoạn thứ ba: Ứng với hai lá cờ vừa chọn, có 3 cách chọn lá cờ thứ ba.
Theo quy tắc nhân ta có: 5.4.3 = 60 cách chọn ba lá cờ từ 5 lá cờ.
Vậy có thể báo nhiều nhất 60 tín hiệu khác nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
271 Đánh giá
50%
40%
0%
0%
0%