Bài tập Toán 10 Bài 1. Dấu của tam thức bậc hai có đáp án
83 người thi tuần này 4.6 1.5 K lượt thi 15 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 1. Không gian mẫu và biến cố (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 4. Ba đường conic trong mặt phẳng tọa độ (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 3. Đường tròn trong mặt phẳng tọa độ (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 2. Đường thẳng trong mặt phẳng tọa độ (Đúng sai - Trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Chân trời sáng tạo Bài 1. Tọa độ của vectơ (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Sau bài học này chúng ta sẽ giải bài toán trên như sau:
Quan sát hình vẽ ta thấy mặt cầu là trục Ox, phần h(x) nằm phía trên mặt cầu nghĩa là h(x) nằm phía trên trục hoành hay là h(x) > 0.
Phần h(x) nằm phía dưới mặt cầu nghĩa là h(x) nằm phía dưới trục hoành hay là h(x) < 0.
Vậy với giá trị của h(x) > 0 thì vòm cầu cao hơn mặt cầu, với giá trị của h(x) < 0 thì vòm cầu thấp hơn mặt cầu.
Lời giải
a) Biểu thức f(x) là đa thức bậc 2.
b) Dựa vào đồ thị ta thấy với x = 2 thì f(2) = 1 > 0.
Vậy f(2) mang dấu dương.
Lời giải
a) Biểu thức f(x) = 2x2 + x – 1 có dạng tam thức bậc hai với a = 2, b = 1 và c = -1 .
Với x = 1 thì f(1) = 2.12 + 1 – 1 = 2 > 0.
b) Biểu thức g(x) = – x4 + 2x2 + 1 không có dạng tam thức bậc hai vì bậc của đa thức là bậc 4.
c) Biểu thức h(x) = – x2 +x – 3 có dạng tam thức bậc hai với a = -1, b = , c = -3.
Với x = 1 thì h(1) = – 12 +. 1 – 3 = – 4 < 0.Lời giải
a) Tam thức bậc hai f(x) = 2x2 – 5x + 2 có ∆ = (-5)2 – 4.2.2 = 25 – 16 = 9 > 0. Do đó f(x) có hai nghiệm phân biệt là:
x1 = = 2 và x2 = .
Vậy biệt thức ∆ = 9 và tam thức có hai nghiệm phân biệt x1 = 2 và x2 =
.
b) Tam thức bậc hai g(x) = – x2 + 6x – 9 có ∆ = 62 – 4.(-1).(-9) = 36 – 36 = 0. Do đó g(x) có nghiệm kép là:
x1 = x2 = .
Vậy biệt thức ∆ = 0 và tam thức có hai nghiệm kép x = 3.
c) Tam thức bậc hai h(x) = 4x2 – 4x + 9 có ∆ = 42 – 4.4.9 = 16 – 144 = - 128 < 0. Do đó f(x) vô nghiệm.
Lời giải
a) Dựa vào hình vẽ ta thấy đồ thị hàm số không cắt trục hoành nên tam thức f(x) = - x2 + 2x – 2 vô nghiệm.
Ta có ∆ = 22 – 4(-1).(-2) = 4 – 8 = - 4 < 0.
Tam thức f(x) có hệ số a = -1 < 0.
Ta thấy toàn bộ đồ thị hàm số nằm phía dưới trục hoành nên f(x) < 0 với mọi x.
Suy ra f(x) cùng dấu với hệ số a với mọi x.
b) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại một điểm duy nhất có hoành độ x = 1 nên tam thức f(x) = - x2 + 2x – 1 có một nghiệm duy nhất x = 1.
Ta có ∆ = 22 – 4(-1).(-1) = 4 – 4 = 0.
Tam thức f(x) có hệ số a = -1 < 0.
Ta thấy với x ≠ 1 toàn bộ đồ thị hàm số nằm phía dưới trục hoành nên f(x) < 0 với x ≠ 1 và f(x) = 0 với x = 1.
Suy ra f(x) cùng dấu với hệ số a với x ≠ 1.
c) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = - 1 và x2 = 3 nên tam thức f(x) = - x2 + 2x + 3 có hai nghiệm phân biệt x1 = - 1 và x2 = 3.
Ta có ∆ = 22 – 4.3.(-1) = 4 + 12 = 16 > 0.
Tam thức f(x) có hệ số a = -1 < 0.
Ta thấy với x < - 1 hoặc x > 3 thì đồ thị hàm số nằm phía dưới trục hoành, với -1 < x < 3 thì đồ thị hàm số nằm phía trên trục hoành hay f(x) < 0 với x < -1 hoặc x > 3; f(x) > 0 với -1 < x < 3 và f(x) = 0 tại x = -1 hoặc x = 3.
Suy ra f(x) cùng dấu với hệ số a với x < -1 hoặc x > 3.
d) Dựa vào hình vẽ ta thấy đồ thị hàm số không cắt trục hoành nên tam thức f(x) = x2 + 6x + 10 vô nghiệm.
Ta có ∆ = 62 – 4.1.10 = 36 – 40 = - 4 < 0.
Tam thức f(x) có hệ số a = 1 > 0.
Ta thấy toàn bộ đồ thị hàm số nằm phía trên trục hoành nên f(x) > 0 với mọi x.
Suy ra f(x) cùng dấu với hệ số a với mọi x.
e) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại một điểm duy nhất có hoành độ x = -3 nên tam thức f(x) = x2 + 6x + 9 có một nghiệm duy nhất x = -3.
Ta có ∆ = 62 – 4.1.9 = 36 – 36 = 0.
Tam thức f(x) có hệ số a = 1 > 0.
Ta thấy với x ≠ -3 toàn bộ đồ thị hàm số nằm phía trên trục hoành nên f(x) > 0 với x ≠ - 3 và f(x) = 0 với x = -3.
Suy ra f(x) cùng dấu với hệ số a với x ≠ -3.
g) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = -4 và x2 = -2 nên tam thức f(x) = x2 + 6x + 8 có hai nghiệm phân biệt x1 = -4 và x2 = -2.
Ta có ∆ = 62 – 4.1.8 = 36 – 32 = 4 > 0.
Tam thức f(x) có hệ số a = 1 > 0.
Ta thấy với x < - 4 hoặc x > -2 thì đồ thị hàm số nằm phía trên trục hoành, với -4 < x < -2 thì đồ thị hàm số nằm phía dưới trục hoành hay f(x) > 0 với x < -4 hoặc x > 2; f(x) < 0 với -4 < x < -2 và f(x) = 0 tại x = -4 hoặc x = -2.
Suy ra f(x) cùng dấu với hệ số a với x < -4 hoặc x > -2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






