Câu hỏi:
13/07/2024 2,072Quan sát đồ thị của các hàm số bậc hai trong các hình dưới đây. Trong mỗi trường hợp hãy cho biết:
- Các nghiệm (nếu có) và dấu của biệt thức ∆.
- Các khoảng giá trị của x mà trên đó f(x) cùng dấu với hệ số của x2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Dựa vào hình vẽ ta thấy đồ thị hàm số không cắt trục hoành nên tam thức f(x) = - x2 + 2x – 2 vô nghiệm.
Ta có ∆ = 22 – 4(-1).(-2) = 4 – 8 = - 4 < 0.
Tam thức f(x) có hệ số a = -1 < 0.
Ta thấy toàn bộ đồ thị hàm số nằm phía dưới trục hoành nên f(x) < 0 với mọi x.
Suy ra f(x) cùng dấu với hệ số a với mọi x.
b) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại một điểm duy nhất có hoành độ x = 1 nên tam thức f(x) = - x2 + 2x – 1 có một nghiệm duy nhất x = 1.
Ta có ∆ = 22 – 4(-1).(-1) = 4 – 4 = 0.
Tam thức f(x) có hệ số a = -1 < 0.
Ta thấy với x ≠ 1 toàn bộ đồ thị hàm số nằm phía dưới trục hoành nên f(x) < 0 với x ≠ 1 và f(x) = 0 với x = 1.
Suy ra f(x) cùng dấu với hệ số a với x ≠ 1.
c) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = - 1 và x2 = 3 nên tam thức f(x) = - x2 + 2x + 3 có hai nghiệm phân biệt x1 = - 1 và x2 = 3.
Ta có ∆ = 22 – 4.3.(-1) = 4 + 12 = 16 > 0.
Tam thức f(x) có hệ số a = -1 < 0.
Ta thấy với x < - 1 hoặc x > 3 thì đồ thị hàm số nằm phía dưới trục hoành, với -1 < x < 3 thì đồ thị hàm số nằm phía trên trục hoành hay f(x) < 0 với x < -1 hoặc x > 3; f(x) > 0 với -1 < x < 3 và f(x) = 0 tại x = -1 hoặc x = 3.
Suy ra f(x) cùng dấu với hệ số a với x < -1 hoặc x > 3.
d) Dựa vào hình vẽ ta thấy đồ thị hàm số không cắt trục hoành nên tam thức f(x) = x2 + 6x + 10 vô nghiệm.
Ta có ∆ = 62 – 4.1.10 = 36 – 40 = - 4 < 0.
Tam thức f(x) có hệ số a = 1 > 0.
Ta thấy toàn bộ đồ thị hàm số nằm phía trên trục hoành nên f(x) > 0 với mọi x.
Suy ra f(x) cùng dấu với hệ số a với mọi x.
e) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại một điểm duy nhất có hoành độ x = -3 nên tam thức f(x) = x2 + 6x + 9 có một nghiệm duy nhất x = -3.
Ta có ∆ = 62 – 4.1.9 = 36 – 36 = 0.
Tam thức f(x) có hệ số a = 1 > 0.
Ta thấy với x ≠ -3 toàn bộ đồ thị hàm số nằm phía trên trục hoành nên f(x) > 0 với x ≠ - 3 và f(x) = 0 với x = -3.
Suy ra f(x) cùng dấu với hệ số a với x ≠ -3.
g) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = -4 và x2 = -2 nên tam thức f(x) = x2 + 6x + 8 có hai nghiệm phân biệt x1 = -4 và x2 = -2.
Ta có ∆ = 62 – 4.1.8 = 36 – 32 = 4 > 0.
Tam thức f(x) có hệ số a = 1 > 0.
Ta thấy với x < - 4 hoặc x > -2 thì đồ thị hàm số nằm phía trên trục hoành, với -4 < x < -2 thì đồ thị hàm số nằm phía dưới trục hoành hay f(x) > 0 với x < -4 hoặc x > 2; f(x) < 0 với -4 < x < -2 và f(x) = 0 tại x = -4 hoặc x = -2.
Suy ra f(x) cùng dấu với hệ số a với x < -4 hoặc x > -2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x = 1.
a) f(x) = 2x2 + x – 1;
b) g(x) = – x4 + 2x2 + 1;
c) h(x) = – x2 +x – 3.
Câu 2:
Tìm giá trị của m để:
a) 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ;
b) mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ.
Câu 3:
Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại thành khung hình chữ nhật mới có kích thước (20 + x) cm và (15 – x) cm. Với x nằm trong các khoảng nào thì diện tích của khung sau khi uốn: tăng lên, không thay đổi, giảm đi?
Câu 4:
Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức bậc hai tương ứng.
Câu 5:
Độ cao (tính bằng mét) của một quả bóng so với vành rổ khi bóng di chuyển được x mét theo phương ngang được mô phỏng bằng hàm số h(x) = - 0,1x2 + x – 1. Trong các khoảng nào của x thì bóng nằm: cao hơn vành rổ, thấp hơn vành rổ và ngang vành rổ? Làm tròn kết quả đến hàng phần mười.
Câu 6:
Xét dấu của tam thức bậc hai sau đây:
a) f(x) = 2x2 + 4x + 2;
b) f(x) = - 3x2 + 2x + 21;
c) f(x) = - 2x2 + x – 2;
d) f(x) = -4x(x + 3) – 9;
e) f(x) = (2x + 5)(x – 3).
Câu 7:
Cầu vòm được thiết kế với thanh vòm hình parabol và mặt cầu đi ở giữa. Trong hệ trục tọa độ như hình vẽ, phương trình của cầu vòm là y = h(x) = -0,006x2 + 1,2x – 30. Với giá trị h(x) như thế nào thì tại vị trí x (0 ≤ x ≤ 200), vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu?
về câu hỏi!