Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại thành khung hình chữ nhật mới có kích thước (20 + x) cm và (15 – x) cm. Với x nằm trong các khoảng nào thì diện tích của khung sau khi uốn: tăng lên, không thay đổi, giảm đi?
Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại thành khung hình chữ nhật mới có kích thước (20 + x) cm và (15 – x) cm. Với x nằm trong các khoảng nào thì diện tích của khung sau khi uốn: tăng lên, không thay đổi, giảm đi?
Câu hỏi trong đề: Bài tập Toán 10 Bài 1. Dấu của tam thức bậc hai có đáp án !!
Quảng cáo
Trả lời:
Diện tích khung dây thép hình chữ nhật ban đầu là: 20.15 = 300 (cm2).
Diện tích khung hình chữ nhật mới là: (20 + x)(15 – x) = 300–5x – x2 (cm2).
Xét hiệu f(x) = 300 – 300 + 5x + x2 = x2 + 5x.
Ta có f(x) = x2 – 5x là tam thức bậc hai có ∆ = 52 – 4.1.0 = 25 > 0. Do đó h(x) có hai nghiệm phân biệt x1 = 0, x2 = -5 và a = 1 > 0.
Khi đó ta có bảng xét dấu:

Suy ra f(x) âm khi x thuộc khoảng (-5; 0), f(x) dương khi x thuộc hai khoảng (-∞; -5) và (0; +∞).
Vậy với x thuộc khoảng (-5; 0) thì diện tích của khung dây thép tăng lên, x thuộc hai khoảng (-∞; -5) và (0; +∞) thì diện tích của khung dây thép giảm đi, và x = - 5 hoặc x = 0 thì diện tích khung dây thép không đổi.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Xét f(x) = 2x2 + 3x + m + 1 là tam thức bậc hai với a = 2, b = 3, c = m + 1.
Ta có: ∆ = 32 – 4.2.(m + 1) = 9 – 8m – 8 = 1 – 8m.
Vì a = 2 > 0 nên để 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ thì ∆ < 0
⇔ 1 – 8m < 0
⇔ m > .
Vậy với m > thì 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ.
b) Xét g(x) = mx2 + 5x – 3.
+) Với m = 0 thì g(x) = 5x – 3.
Ta có: 5x – 3 ≤ 0 ⇔ x ≤ .
Do đó với m = 0 không thỏa mãn.
+) Với m ≠ 0 thì g(x) = mx2 + 5x – 3 là tam thức bậc hai với a = m, b = 5, c = - 3.
Ta có ∆ = 52 – 4.m.(-3) = 25 + 12m.
Để mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ thì
.
Vậy với thì mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ .
Lời giải
Ta có h(x) = -0,1x2 + x – 1 là tam thức bậc hai với a = -0,1, b = 1 và c = -1.
Tam thức bậc hai h(x) = -0,1x2 + x – 1 có ∆ = 12 – 4.(-0,1).(-1) = 0,6 > 0. Do đó h(x) có hai nghiệm phân biệt x1 = 5 + , x2 = 5 – và a = -0,1 < 0.
Ta có bảng xét dấu sau:

Suy ra h(x) dương khi x thuộc khoảng và h(x) âm khi x thuộc hai khoảng và .
Dựa vào hình vẽ ta thấy trục Ox chính là vành rổ.
Ta có và
Vậy với x thuộc khoảng (1,1; 8,9) thì bóng nằm cao hơn vành rổ và với x thuộc khoảng (– ∞;1,1) và (8,9 ; + ∞) thì bóng nằm thấp hơn vành rổ và với x ≈ 1,1 hoặc x ≈ 8,9 thì bóng nằm ngang vành rổ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


