Câu hỏi:
13/07/2024 9,797Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức bậc hai tương ứng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Dựa vào hình vẽ ta thấy:
Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = - 2 và x2 = . Do đó f(x) có hai nghiệm phân biệt x1 = - 2, x2 = và a = 1 > 0.
Với x thuộc khoảng (-∞; -2) và thì đồ thị hàm số nằm phía trên trục hoành hay f(x) > 0 khi x thuộc khoảng (-∞; -2) và .
Với x thuộc khoảng thì đồ thị hàm số nằm dưới trục hoành hay f(x) < 0 khi x ∈ .
Ta có bảng xét dấu f(x) như sau:
b) Dựa vào hình vẽ ta thấy:
Đồ thị hàm số không cắt trục hoành. Do đó g(x) vô nghiệm và a = 1 > 0.
Hơn nữa toàn bộ đồ thị hàm số g(x) nằm phía trên trục hoành với mọi giá trị của x nên g(x) > 0 với mọi x.
Ta có bảng xét dấu f(x) như sau:
c) Dựa vào hình vẽ ta thấy:
Đồ thị hàm số h(x) cắt trục hoành tại một điểm duy nhất có hoành độ x = . Do đó h(x) có nghiệm duy nhất x = và a = - 9 < 0.
Với x = thì h(x) = 0;
Với x ≠ thì đồ thị hàm số h(x) nằm hoàn toàn dưới trục hoành nên h(x) < 0 với x ≠ .
Khi đó ta có bảng xét dấu:
d) Dựa vào hình vẽ ta thấy:
Đồ thị hàm số không cắt trục hoành. Do đó f(x) vô nghiệm và a = -0,5 < 0.
Hơn nữa toàn bộ đồ thị hàm số f(x) nằm phía dưới trục hoành với mọi giá trị của x nên f(x) < 0 với mọi x.
Ta có bảng xét dấu f(x) như sau:
e) Dựa vào hình vẽ ta thấy:
Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = - 2 và x2 = . Do đó g(x) có hai nghiệm phân biệt x1 = - 2, x2 = và a = -1 < 0.
Với x thuộc khoảng (-∞; -2) và thì đồ thị hàm số nằm phía dưới trục hoành hay g(x) < 0 khi x thuộc khoảng (-∞; -2) và .
Với x thuộc khoảng thì đồ thị hàm số nằm trên trục hoành hay g(x) > 0 khi x ∈ .
Ta có bảng xét dấu g(x) như sau:
g) Dựa vào hình vẽ ta thấy:
Đồ thị hàm số h(x) cắt trục hoành tại một điểm duy nhất có hoành độ x = . Do đó h(x) có nghiệm duy nhất x = và a = 1 > 0.
Với x = thì h(x) = 0;
Với x ≠ thì đồ thị hàm số h(x) nằm hoàn toàn phía trên trục hoành nên h(x) > 0 với x ≠ .
Khi đó ta có bảng xét dấu:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x = 1.
a) f(x) = 2x2 + x – 1;
b) g(x) = – x4 + 2x2 + 1;
c) h(x) = – x2 +x – 3.
Câu 2:
Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại thành khung hình chữ nhật mới có kích thước (20 + x) cm và (15 – x) cm. Với x nằm trong các khoảng nào thì diện tích của khung sau khi uốn: tăng lên, không thay đổi, giảm đi?
Câu 3:
Tìm giá trị của m để:
a) 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ;
b) mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ.
Câu 4:
Độ cao (tính bằng mét) của một quả bóng so với vành rổ khi bóng di chuyển được x mét theo phương ngang được mô phỏng bằng hàm số h(x) = - 0,1x2 + x – 1. Trong các khoảng nào của x thì bóng nằm: cao hơn vành rổ, thấp hơn vành rổ và ngang vành rổ? Làm tròn kết quả đến hàng phần mười.
Câu 5:
Xét dấu của tam thức bậc hai sau đây:
a) f(x) = 2x2 + 4x + 2;
b) f(x) = - 3x2 + 2x + 21;
c) f(x) = - 2x2 + x – 2;
d) f(x) = -4x(x + 3) – 9;
e) f(x) = (2x + 5)(x – 3).
Câu 6:
Cầu vòm được thiết kế với thanh vòm hình parabol và mặt cầu đi ở giữa. Trong hệ trục tọa độ như hình vẽ, phương trình của cầu vòm là y = h(x) = -0,006x2 + 1,2x – 30. Với giá trị h(x) như thế nào thì tại vị trí x (0 ≤ x ≤ 200), vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu?
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
về câu hỏi!