Câu hỏi:

13/07/2024 15,184 Lưu

Xét dấu của tam thức bậc hai sau đây:

a) f(x) = 2x2 + 4x + 2;

b) f(x) = - 3x2 + 2x + 21;

c) f(x) = - 2x2 + x – 2;

d) f(x) = -4x(x + 3) – 9;

e) f(x) = (2x + 5)(x – 3).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Tam thức bậc hai f(x) = 2x2 + 4x + 2 có ∆ = 42 – 4.2.2 = 16 – 16 = 0. Do đó f(x) có một nghiệm kép x1 = x2 = - 1 và a = 2 > 0.

Ta có bảng xét dấu sau:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 1)

Vậy f(x) = 2x2 + 4x + 2 mang dấu dương khi x ≠ - 1.

b) Tam thức bậc hai f(x) = - 3x2 + 2x + 21 có ∆ = 22 – 4.(-3).21 = 256 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x2 = 73 và a = -3 < 0.

Ta có bảng xét dấu:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 2)

Vậy f(x) = - 3x2 + 2x + 21 dương khi x thuộc khoảng 73;3 và f(x) = - 3x2 + 2x + 21 âm khi x thuộc hai khoảng ;73 và 3;+.

c) Tam thức bậc hai f(x) = - 2x2 + x – 2 có ∆ = 12 – 4.(-2).(-2) = 1 – 16 = -15 < 0. Do đó hàm số vô nghiệm và a = -2 < 0.

Ta có bảng xét dấu:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 3)

Vậy f(x) = - 2x2 + x – 2 âm với mọi giá trị thực của x.

d) Ta có f(x) = -4x(x + 3) – 9 = - 4x2 – 12x – 9.

Xét tam thức f(x) = - 4x2 – 12x – 9 có ∆ = (-12)2 – 4.(-4)(-9) = 144 – 144 = 0. Do đó f(x) có nghiệm kép x1 = x2 32 và a = - 4 < 0.

Ta có bảng xét dấu:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 4)

Vậy f(x) mang dấu âm khi x ≠ 32.

e) Ta có f(x) = (2x + 5)(x – 3) = 2x2 – 6x + 5x – 15 = 2x2 – x – 15.

Tam thức f(x) = 2x2 – x – 15 có ∆ = (-1)2 – 4.2.(-15) = 1 + 120 = 121 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x252 và a = 2 > 0.

Ta có bảng xét dấu:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 5)

Vậy f(x) = (2x + 5)(x – 3) âm khi x thuộc khoảng 52;3  và f(x) = (2x + 5)(x – 3) dương khi x thuộc hai khoảng ;52 và (3; +∞).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích khung dây thép hình chữ nhật ban đầu là: 20.15 = 300 (cm2).

Diện tích khung hình chữ nhật mới là: (20 + x)(15 – x) = 3005x – x2 (cm2).

Xét hiệu f(x) = 300 – 300 + 5x + x2 = x2 + 5x.

Ta có f(x) = x2 – 5x là tam thức bậc hai có ∆ = 52 – 4.1.0 = 25 > 0. Do đó h(x) có hai nghiệm phân biệt x1 = 0, x2 = -5 và a = 1 > 0.

Khi đó ta có bảng xét dấu:

Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại  (ảnh 1)

Suy ra f(x) âm khi x thuộc khoảng (-5; 0), f(x) dương khi x thuộc hai khoảng (-∞; -5) và (0; +∞).

Vậy với x thuộc khoảng (-5; 0) thì diện tích của khung dây thép tăng lên, x thuộc hai khoảng (-∞; -5) và (0; +∞) thì diện tích của khung dây thép giảm đi, và x = - 5 hoặc x = 0 thì diện tích khung dây thép không đổi.

Lời giải

a) Xét f(x) = 2x2 + 3x + m + 1 là tam thức bậc hai với a = 2, b = 3, c = m + 1.

Ta có: ∆ = 32 – 4.2.(m + 1) = 9 – 8m – 8 = 1 – 8m.

Vì a = 2 > 0 nên để 2x2 + 3x + m + 1 > 0 với mọi x ℝ thì ∆ < 0

1 – 8m < 0

m > 18.

Vậy với m > 18 thì 2x2 + 3x + m + 1 > 0 với mọi x ℝ.

b) Xét g(x) = mx2 + 5x – 3.

+) Với m = 0 thì g(x) = 5x – 3.

Ta có: 5x – 3 ≤ 0 x ≤ 35.

Do đó với m = 0 không thỏa mãn.

+) Với m ≠ 0 thì g(x) = mx2 + 5x – 3 là tam thức bậc hai với a = m, b = 5, c = - 3.

Ta có ∆ = 52 – 4.m.(-3) = 25 + 12m.

Để mx2 + 5x – 3 ≤ 0 với mọi x ℝ thì

a<0Δ0m<025+12m0m<0m2512m2512.

Vậy với m2512 thì mx2 + 5x – 3 ≤ 0 với mọi x ℝ .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP