Bài tập Toán 10 Bài 3. Phương trình quy về phương trình bậc hai có đáp án
32 người thi tuần này 4.6 0.9 K lượt thi 10 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Vì x là độ dài cạnh tam giác vuông nên x > 0.
Ta có OA = \(\frac{1}{2}\)OC
\( \Leftrightarrow \sqrt {{x^2} - 1} = \frac{1}{2}\sqrt {{x^2} + 1} \) (điều kiện x2 – 1 ≥ 0 ⇔ x2 ≥ 1 \( \Leftrightarrow \left[ \begin{array}{l}x \le - 1\\x \ge 1\end{array} \right.\)).
\( \Leftrightarrow {x^2} - 1 = \frac{1}{4}\left( {{x^2} + 1} \right)\)
⇔ 4x2 – 4 = x2 + 1
⇔ 3x2 = 5
⇔ x2 = \(\frac{5}{3}\)
⇔ \(\left[ \begin{array}{l}{x_1} = - \sqrt {\frac{5}{3}} \\{x_2} = \sqrt {\frac{5}{3}} \end{array} \right.\)
Do đó x = \( - \sqrt {\frac{5}{3}} \)(không thỏa mãn) hoặc x = \(\sqrt {\frac{5}{3}} \)(thỏa mãn)
Vậy với x = \(\sqrt {\frac{5}{3}} \) thì OA = \(\frac{1}{2}\)OC.
Lời giải
Lời giải trên sai, vì thiếu bước thử lại nghiệm dẫn đến kết luận nghiệm sai.
Để có lời giải đúng ta làm như sau:
\(\sqrt { - 2{x^2} - 2x + 11} = \sqrt { - {x^2} + 3} \)
⇒ - 2x2 – 2x + 11 = -x2 + 3 (bình phương cả hai vế làm mất dấu căn)
⇒ x2 +2x - 8 = 0 (chuyển vế, rút gọn)
⇒ x = 2 hoặc x = - 4 (giải phương trình bậc hai)
Thay x = 2 vào phương trình đã cho ta được:
Do đó x = 2 không thỏa mãn.
Thay x = -4 vào phương trình đã cho ta được:
\(\sqrt { - 2.{{\left( { - 4} \right)}^2} - 2.\left( { - 4} \right) + 11} = \sqrt { - {{\left( { - 4} \right)}^2} + 3} \Leftrightarrow \sqrt { - 13} = \sqrt { - 13} \) là mệnh đề sai.
Do đó x = -4 không thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
Lời giải
\(\sqrt {31{x^2} - 58x + 1} = \sqrt {10{x^2} - 11x - 19} .\)
⇒ 31x2 – 58x + 1 = 10x2 – 11x – 19 (bình phương phương trình)
⇒ 21x2 – 47x + 20 = 0
⇒ \(\left[ \begin{array}{l}x = \frac{5}{3}\\x = \frac{4}{7}\end{array} \right.\)
Thay lần lượt x = \(\frac{5}{3}\) và x = \(\frac{4}{7}\)vào phương trình đã cho ta thấy không có giá trị nào thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
Lời giải
Lời giải trên sai vì thiếu bước thử lại nghiệm dẫn đến kết luận nghiệm sai.
Lời giải đúng là:
\(\sqrt { - {x^2} + x + 1} = x\)
⇒ - x2 + x + 1 = x2 (bình phương cả hai vế để làm mất dấu căn)
⇒ - 2x2 + x + 1 = 0 (chuyển vế, rút gọn)
⇒ x = 1 hoặc x = \( - \frac{1}{2}\) (giải phương trình bậc hai)
Thay x = 1 và x = \( - \frac{1}{2}\) vào phương trình đã cho ta thấy chỉ có x = 1 là thỏa mãn.
Vậy phương trình đã cho có nghiệm là x = 1.
Lời giải
\(\sqrt {3{x^2} + 27x - 41} = 2x + 3\)
⇒ 3x2 + 27x – 41 = 4x2 + 12x + 9.
⇒ -x2 + 15x – 50 = 0.
⇒ x = 5 hoặc x = 10.
Thay lần lượt x = 5 hoặc x = 10 vào phương trình đã cho ta thấy x = 5 và x = 10 thỏa mãn.
Vậy phương trình đã cho có hai nghiệm x = 5 và x = 10.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
187 Đánh giá
50%
40%
0%
0%
0%