Câu hỏi:

13/07/2024 6,796 Lưu

Giải phương trình sau:

a) \(\sqrt {{x^2} + 3x + 1} = 3;\)

b) \(\sqrt {{x^2} - x - 4} = x + 2;\)

c) 2 + \(\sqrt {12 - 2x} \) = x;

d) \(\sqrt {2{x^2} - 3x - 10} = - 5.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(\sqrt {{x^2} + 3x + 1} = 3\)

x2 + 3x + 1 = 9

x2 + 3x – 8 = 0

x = \(\frac{{ - 3 - \sqrt {41} }}{2}\) hoặc x = \(\frac{{ - 3 + \sqrt {41} }}{2}\).

Thay lần lượt hai giá trị này vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.

Vậy phương trình đã cho có tập nghiệm \(S = \left\{ {\frac{{ - 3 - \sqrt {41} }}{2};\frac{{ - 3 + \sqrt {41} }}{2}} \right\}\).

b) \(\sqrt {{x^2} - x - 4} = x + 2\)

x2 – x – 4 = x2 + 4x + 4

– 5x = 8

x = \( - \frac{8}{5}\)

Thay x = \( - \frac{8}{5}\) vào phương trình đã cho ta thấy thỏa mãn.

Vậy nghiệm của phương trình đã cho là x = \( - \frac{8}{5}\).

c) 2 + \(\sqrt {12 - 2x} \) = x

\(\sqrt {12 - 2x} \)= x – 2

12 – 2x = x2 – 4x + 4

x2 – 2x – 8 = 0

x = 4 hoặc x = - 2

Thay lần lượt từng giá trị của x vào phương trình đã cho ta thấy chỉ có x = 4 thỏa mãn.

Vậy nghiệm của phương trình đã cho là x = 4.

d) \(\sqrt {2{x^2} - 3x - 10} = - 5.\)

2x2 – 3x – 10 = 25

2x2 – 3x – 35 = 0

x = 5 và x = \( - \frac{7}{2}\)

Thay lần lượt từng giá trị của x vào phương trình đã cho ta thấy không có giá trị nào thỏa mãn.

Vậy phương trình đã cho vô nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Xét tam giác MOB có:

Áp dụng định lí côsin, ta có:

MB2 = OM2 + OB2 – 2.OM.OB.cos\(\widehat {BOM}\)

MB2 = x2 + 22 – 2.x.2.cos60°

MB2 = x2 + 4 – 2x

MB = \(\sqrt {{x^2} - 2x + 4} \) (km).

Ta lại có \(\widehat {AOM} + \widehat {BOM} = 180^\circ \) \(\widehat {AOM} = 180^\circ - \widehat {BOM} = 180^\circ - 60^\circ = 120^\circ \).

Xét tam giác MOA có:

Áp dụng định lí côsin, ta có:

MA2 = OM2 + OA2 – 2.OM.OA.cos\(\widehat {AOM}\)

MA2 = x2 + 12 – 2.x.1.cos120°

MA2 = x2 + 1 + x

MA = \(\sqrt {{x^2} + x + 1} \) (km).

Vậy MA = \(\sqrt {{x^2} + x + 1} \) km và MB = \(\sqrt {{x^2} - 2x + 4} \) km.

b) Để khoảng cách từ tàu đến B bằng \(\frac{4}{5}\) khoảng cách từ tàu đến A thì \(\sqrt {{x^2} - 2x + 4} = \frac{4}{5}\sqrt {{x^2} + x + 1} \)

x2 – 2x + 4 = \(\frac{{16}}{{25}}\)(x2 + x + 1)

25x2 – 50x + 100 = 16x2 + 16x + 16

9x2 – 66x + 84 = 0

x = \(\frac{{11 - \sqrt {37} }}{3}\) hoặc x = \(\frac{{11 + \sqrt {37} }}{3}\).

Thay lần lượt các giá trị trên vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.

Vậy với x = \(\frac{{11 - \sqrt {37} }}{3}\) hoặc x = \(\frac{{11 + \sqrt {37} }}{3}\) thì khoảng cách từ tàu đến B bằng \(\frac{4}{5}\) khoảng cách từ tàu đến A.

c) Đổi 500 m = 0,5 km = \(\frac{1}{2}\) km

Để khoảng cách từ tàu đến B nhỏ hơn khoảng cách từ tàu đến O 500 m thì

\(\sqrt {{x^2} - 2x + 4} = x - \frac{1}{2}\)

x2 – 2x + 4 = x2 – x + \(\frac{1}{4}\)

– x = \( - \frac{{15}}{4}\).

x = \(\frac{{15}}{4}\).

Vậy x = \(\frac{{15}}{4}\) thì khoảng cách từ tàu đến B nhỏ hơn khoảng cách từ tàu đến O 500 m.

Lời giải

Cho tam giác ABC vuông tại A có AB ngắn hơn AC là 2cm. a) Biểu diễn độ dài cạnh huyền BC (ảnh 1)

Gọi AB = x (cm) (x > 0)

Vì AB ngắn hơn AC là 2cm nên AC = x + 2 (cm).

a) Xét tam giác ABC vuông tại A, có:

BC2 = AB2 + AC2 (định lí Py – ta – go)

BC2 = x2 + (x + 2)2

BC2 = x2 + x2 + 4x + 4

BC2 = 2x2 + 4x + 4

BC = \(\sqrt {2{x^2} + 4x + 4} \) (cm)

Vậy BC = \(\sqrt {2{x^2} + 4x + 4} \) (cm).

b) Chu vi của tam giác ABC là:

AB + AC + BC = x + x + 2 + \(\sqrt {2{x^2} + 4x + 4} \) = 2x + 2 + \(\sqrt {2{x^2} + 4x + 4} \) (cm).

Mà chu vi của tam giác ABC là 24cm nên ta có phương trình:

2x + 2 + \(\sqrt {2{x^2} + 4x + 4} \) = 24

\(\sqrt {2{x^2} + 4x + 4} \) = 22 – 2x

2x2 + 4x + 4 = 484 – 88x + 4x2

2x2 – 92x + 480 = 0

x2 – 46x + 240 = 0

x = 40 và x = 6.

Thay lần lượt hai nghiệm vào phương trình đã cho ta thấy x = 6 thỏa mãn.

Với x = 6 thì AB = 6 cm, AC = 6 + 2 = 8 cm, BC = \(\sqrt {{{2.6}^2} + 4.6 + 4} = 10\) cm.

Vậy độ dài các cạnh của tam giác ABC lần lượt là AB = 6cm, AC = 8cm, BC = 10 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP