Bài tập cuối chương V có đáp án
54 người thi tuần này 4.6 835 lượt thi 12 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Gọi Δ1, Δ2, Δ3 lần lượt là giá của ba vectơ .
+ Vectơ cùng phương với vectơ
⇒ Δ1 //≡ Δ3
+ Vectơ cùng phương với vectơ
⇒ Δ2 //≡ Δ3
Do đó: Δ1 //≡ Δ2
Vậy vectơ cùng phương với vectơ (theo định nghĩa).
Vậy khẳng định a) đúng.
b) Hai vectơ cùng ngược hướng với .
Suy ra đều cùng phương với .
Theo câu a suy ra vectơ cùng phương với vectơ .
Do đó, hai vectơ và chỉ có thể cùng hướng hoặc ngược hướng.
Mà hai vectơ và đều ngược hướng với nên hai vectơ và cùng hướng.
Vậy khẳng định b) đúng.
Lời giải
a) Vì ABCD là hình chữ nhật nên hai đường chéo AC và BD bằng nhau và cắt nhau tại trung điểm O.
Xét tam giác ABC vuông tại B, theo định lí Pythagore ta có:
AC2 = AB2 + BC2 = a2 + (3a)2 = 10a2 .
Do đó: BD = AC = .
Vậy .
b) Vì O là trung điểm của AC nên AO = OC = AC = .
Khi đó:
Hai vectơ và ngược hướng và có độ dài bằng nhau nên hai vectơ này đối nhau.
Hai vectơ và ngược hướng và có độ dài bằng nhau nên hai vectơ này đối nhau.
Vì O là trung điểm của BD nên BO = OD = BD = .
Khi đó: .
Hai vectơ và ngược hướng và có độ dài bằng nhau nên hai vectơ này đối nhau.
Hai vectơ và ngược hướng và có độ dài bằng nhau nên hai vectơ này đối nhau.
Vậy các cặp vectơ đối nhau và có độ dài bằng trong hình là: ; ; và .
Lời giải
ABCD là hình thoi nên AB = BC = CD = DA = a.
Xét tam giác ABD có AB = AD và nên tam giác ABD đều.
Suy ra BD = AB = AD = a.
Ta có: .
Áp dụng định lí côsin trong tam giác ADC ta có:
AC2 = AD2 + DC2 – 2 . AD . DC . cosADC
= a2 + a2 – 2 . a . a . cos120° = 3a2
Suy ra: AC = .
+ Vì ABCD là hình thoi nên ABCD cũng là hình bình hành nên theo quy tắc hình bình hành ta có: .
Do đó: .
+ Ta có:
Do đó: .
+ Ta có:
Do đó: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
167 Đánh giá
50%
40%
0%
0%
0%