Câu hỏi:

13/07/2024 3,213 Lưu

Cho tam giác ABC. Bên ngoài tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh rằng RJ+IQ+PS=0.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Do ABIJ là hình bình hành nên AJ=BI.

Do BCPQ là hình bình hành nên BQ=CP.

Do CARS là hình bình hành nên RA=SC.

Áp dụng quy tắc ba điểm ta có:

RJ+IQ+PS=(RA+AJ)+(IB+BQ)+(PC+CS)

=(RA+CS)+(AJ+IB)+(BQ+PC)

=(SC+CS)+(BI+IB)+(CP+PC)

=SS+BB+CC=0+0+0=0.

Vậy RJ+IQ+PS=0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Công sinh bởi lực F 

A = |F|.AB.cos(F,AB)= 50 . 200 . cos30° = 50003 (J).

Góc tạo bởi lực F1 AB là 90°, do đó công sinh bởi lực F1 

A1 = |F1|.AB.cos(F1,AB)= |F1|.200.cos90°=0  (J).

Ta có: |F2|=|F|.cos30°=50.32=253 (N)

Hai vectơ F2 AB cùng hướng nên (F2,  AB)=0°.

Do đó công sinh bởi lực F2 

A2 = |F2|.AB.cos(F2,AB)= 253.200.cos0°=50003  (J).

Lời giải

Media VietJack

ABCD là hình thoi nên AB = BC = CD = DA = a.

Xét tam giác ABD có AB = AD và BAD^=60° nên tam giác ABD đều.

Suy ra BD = AB = AD = a.

Ta có: ADC^=180°BAD^=180°60°=120° .

Áp dụng định lí côsin trong tam giác ADC ta có:

AC2 = AD2 + DC2 – 2 . AD . DC . cosADC

= a2 + a2 – 2 . a . a . cos120° = 3a2

Suy ra: AC = a3 .

+ Vì ABCD là hình thoi nên ABCD cũng là hình bình hành nên theo quy tắc hình bình hành ta có: p=AB+AD=AC .

Do đó: |p|=|AC|=AC=a3 .

+ Ta có:u=ABAD=DB

Do đó: |u|=|DB|=DB=a .

+ Ta có: v=2ABAC=2AB(AB+AD)=ABAD=DB

Do đó: |v|=|DB|=DB=a .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP