Giải SBT Toán 10 Bài 3. Giải tam giác và ứng dụng thực tế có đáp án
36 người thi tuần này 4.6 1 K lượt thi 8 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Lời giải
Áp dụng định lí côsin ta có:
c2 = a2 + b2 – 2abcosC
mà a = b nên
c2 = a2 + a2 – 2a2cosC
c2 = 2a2 – 2a2cosC
c2 = 2a2 (1 – cosC ).
Lời giải
Lời giải
Tam giác ABC có: \(\widehat {\rm{A}}\) + \(\widehat {\rm{B}}\) + \(\widehat {\rm{C}}\) = 180°.
⇒ \(\widehat {\rm{C}}\) = 180° – \(\widehat {\rm{A}}\)– \(\widehat {\rm{B}}\) = 180° – 42° – 63° = 75°.
Vậy \(\widehat {\rm{C}}\) = 75°.
Lời giải
Lời giải
Áp dụng định lí côsin ta có:
AB2 = BC2 + AC2 – 2BC.AC.cos\(\widehat {\rm{C}}\)
AB2 = 102 + 202 – 2.10.20.cos80°
AB = \(\sqrt {{{10}^2} + {\rm{ }}{{20}^2}--{\rm{ }}2.10.20.{\rm{cos}}80^\circ } \)
AB ≈ 20,75.
Áp dụng định lí sin ta có: \(\frac{{{\rm{AB}}}}{{{\rm{sinC}}}}{\rm{ = }}\frac{{{\rm{AC}}}}{{{\rm{sinB}}}}{\rm{ = }}\frac{{{\rm{BC}}}}{{{\rm{sinA}}}}\)≈ \(\frac{{20,75}}{{\sin 80^\circ }}\).
⇒ sinB = AC : \(\frac{{20,75}}{{\sin 80^\circ }}\) = 20 : \(\frac{{20,75}}{{\sin 80^\circ }}\) ≈ 0,949 ⇒ \(\widehat {\rm{B}}\) ≈ 71°37’.
⇒ sinA = BC : \(\frac{{20,75}}{{\sin 80^\circ }}\) = 10 : \(\frac{{20,75}}{{\sin 80^\circ }}\) ≈ 0,475 ⇒ \(\widehat {\rm{C}}\) ≈ 28°21’.
Vậy \(\widehat {\rm{B}}\) ≈ 71°37’ và \(\widehat {\rm{C}}\) ≈ 28°21’.
Lời giải
Lời giải
Theo định lí côsin ta có: AB2 = BC2 + AC2 – 2BC.AC.cos\(\widehat {\rm{C}}\)
⇒ cos\(\widehat {\rm{C}}\) = \(\frac{{{\rm{B}}{{\rm{C}}^2} + {\rm{A}}{{\rm{C}}^2} - {\rm{A}}{{\rm{B}}^2}}}{{2.{\rm{BC}}.{\rm{AC}}}}\) = \(\frac{{{{30}^2} + {{25}^2} - {{15}^2}}}{{2.30.25}}\) = \(\frac{{13}}{{15}}\) ⇒ \(\widehat {\rm{C}}\) ≈ 29°55’.
Tương tự như trên, ta có:
cos\(\widehat {\rm{A}}\) = \(\frac{{{\rm{A}}{{\rm{B}}^2} + {\rm{A}}{{\rm{C}}^2} - {\rm{BC}}{^2}}}{{2.{\rm{AB}}.{\rm{AC}}}}\)= \(\frac{{{{15}^2} + {{25}^2} - {{30}^2}}}{{2.15.25}}\) = \(\frac{{ - 1}}{{15}}\) ⇒ \(\widehat {\rm{A}}\) ≈ 93°49’.
cos\(\widehat {\rm{B}}\) = \(\frac{{{\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^2} - {\rm{AC}}{^2}}}{{2.{\rm{AB}}.{\rm{BC}}}}\)= \(\frac{{{{15}^2} + {{30}^2} - {{25}^2}}}{{2.15.30}}\) = \(\frac{5}{9}\) ⇒ \(\widehat {\rm{B}}\) ≈ 56°15’.
Lời giải
Lời giải
Đặt d = PQ = 50m; h = AR là chiều cao từ giác kế đến đỉnh tòa nhà.
Ta có: \(\widehat {{\rm{RQA}}}\)= 79° và \(\widehat {{\rm{RPA}}}\)= 65°
tan\(\widehat {{\rm{RQA}}}\) = \(\frac{{{\rm{AR}}}}{{{\rm{QR}}}}\) = \(\frac{{\rm{h}}}{{{\rm{QR}}}}\) ⇒ QR = \(\frac{{\rm{h}}}{{{\rm{tan}}\widehat {{\rm{RQA}}}}}\) = \(\frac{{\rm{h}}}{{{\rm{tan79^\circ }}}}\).
tan\(\widehat {{\rm{RPA}}}\) = \(\frac{{{\rm{AR}}}}{{{\rm{PR}}}}\) = \(\frac{{\rm{h}}}{{{\rm{PR}}}}\) ⇒ PR = \(\frac{{\rm{h}}}{{{\rm{tan}}\widehat {{\rm{RPA}}}}}\) = \(\frac{{\rm{h}}}{{{\rm{tan65^\circ }}}}\).
Ta có:
PQ = PR – QR = \(\frac{{\rm{h}}}{{{\rm{tan65^\circ }}}}\) – \(\frac{{\rm{h}}}{{{\rm{tan79^\circ }}}}\) = h \(\left( {\frac{1}{{\tan 65^\circ }} - \frac{1}{{\tan 79^\circ }}} \right)\) = 50 (m)
⇒ h ≈ 183,9 (m)
Vậy chiều cao của tòa nhà là AR + RO ≈ 183,9 + 1,4 = 185,3 (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



