Giải SBT Toán 10 Bài 3. Giải tam giác và ứng dụng thực tế có đáp án
29 người thi tuần này 4.6 772 lượt thi 8 câu hỏi
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Lời giải
Áp dụng định lí côsin ta có:
c2 = a2 + b2 – 2abcosC
mà a = b nên
c2 = a2 + a2 – 2a2cosC
c2 = 2a2 – 2a2cosC
c2 = 2a2 (1 – cosC ).
Lời giải
Lời giải
Tam giác ABC có: \(\widehat {\rm{A}}\) + \(\widehat {\rm{B}}\) + \(\widehat {\rm{C}}\) = 180°.
⇒ \(\widehat {\rm{C}}\) = 180° – \(\widehat {\rm{A}}\)– \(\widehat {\rm{B}}\) = 180° – 42° – 63° = 75°.
Vậy \(\widehat {\rm{C}}\) = 75°.
Lời giải
Lời giải
Áp dụng định lí côsin ta có:
AB2 = BC2 + AC2 – 2BC.AC.cos\(\widehat {\rm{C}}\)
AB2 = 102 + 202 – 2.10.20.cos80°
AB = \(\sqrt {{{10}^2} + {\rm{ }}{{20}^2}--{\rm{ }}2.10.20.{\rm{cos}}80^\circ } \)
AB ≈ 20,75.
Áp dụng định lí sin ta có: \(\frac{{{\rm{AB}}}}{{{\rm{sinC}}}}{\rm{ = }}\frac{{{\rm{AC}}}}{{{\rm{sinB}}}}{\rm{ = }}\frac{{{\rm{BC}}}}{{{\rm{sinA}}}}\)≈ \(\frac{{20,75}}{{\sin 80^\circ }}\).
⇒ sinB = AC : \(\frac{{20,75}}{{\sin 80^\circ }}\) = 20 : \(\frac{{20,75}}{{\sin 80^\circ }}\) ≈ 0,949 ⇒ \(\widehat {\rm{B}}\) ≈ 71°37’.
⇒ sinA = BC : \(\frac{{20,75}}{{\sin 80^\circ }}\) = 10 : \(\frac{{20,75}}{{\sin 80^\circ }}\) ≈ 0,475 ⇒ \(\widehat {\rm{C}}\) ≈ 28°21’.
Vậy \(\widehat {\rm{B}}\) ≈ 71°37’ và \(\widehat {\rm{C}}\) ≈ 28°21’.
Lời giải
Lời giải
Theo định lí côsin ta có: AB2 = BC2 + AC2 – 2BC.AC.cos\(\widehat {\rm{C}}\)
⇒ cos\(\widehat {\rm{C}}\) = \(\frac{{{\rm{B}}{{\rm{C}}^2} + {\rm{A}}{{\rm{C}}^2} - {\rm{A}}{{\rm{B}}^2}}}{{2.{\rm{BC}}.{\rm{AC}}}}\) = \(\frac{{{{30}^2} + {{25}^2} - {{15}^2}}}{{2.30.25}}\) = \(\frac{{13}}{{15}}\) ⇒ \(\widehat {\rm{C}}\) ≈ 29°55’.
Tương tự như trên, ta có:
cos\(\widehat {\rm{A}}\) = \(\frac{{{\rm{A}}{{\rm{B}}^2} + {\rm{A}}{{\rm{C}}^2} - {\rm{BC}}{^2}}}{{2.{\rm{AB}}.{\rm{AC}}}}\)= \(\frac{{{{15}^2} + {{25}^2} - {{30}^2}}}{{2.15.25}}\) = \(\frac{{ - 1}}{{15}}\) ⇒ \(\widehat {\rm{A}}\) ≈ 93°49’.
cos\(\widehat {\rm{B}}\) = \(\frac{{{\rm{A}}{{\rm{B}}^2} + {\rm{B}}{{\rm{C}}^2} - {\rm{AC}}{^2}}}{{2.{\rm{AB}}.{\rm{BC}}}}\)= \(\frac{{{{15}^2} + {{30}^2} - {{25}^2}}}{{2.15.30}}\) = \(\frac{5}{9}\) ⇒ \(\widehat {\rm{B}}\) ≈ 56°15’.
Lời giải
Lời giải
Đặt d = PQ = 50m; h = AR là chiều cao từ giác kế đến đỉnh tòa nhà.
Ta có: \(\widehat {{\rm{RQA}}}\)= 79° và \(\widehat {{\rm{RPA}}}\)= 65°
tan\(\widehat {{\rm{RQA}}}\) = \(\frac{{{\rm{AR}}}}{{{\rm{QR}}}}\) = \(\frac{{\rm{h}}}{{{\rm{QR}}}}\) ⇒ QR = \(\frac{{\rm{h}}}{{{\rm{tan}}\widehat {{\rm{RQA}}}}}\) = \(\frac{{\rm{h}}}{{{\rm{tan79^\circ }}}}\).
tan\(\widehat {{\rm{RPA}}}\) = \(\frac{{{\rm{AR}}}}{{{\rm{PR}}}}\) = \(\frac{{\rm{h}}}{{{\rm{PR}}}}\) ⇒ PR = \(\frac{{\rm{h}}}{{{\rm{tan}}\widehat {{\rm{RPA}}}}}\) = \(\frac{{\rm{h}}}{{{\rm{tan65^\circ }}}}\).
Ta có:
PQ = PR – QR = \(\frac{{\rm{h}}}{{{\rm{tan65^\circ }}}}\) – \(\frac{{\rm{h}}}{{{\rm{tan79^\circ }}}}\) = h \(\left( {\frac{1}{{\tan 65^\circ }} - \frac{1}{{\tan 79^\circ }}} \right)\) = 50 (m)
⇒ h ≈ 183,9 (m)
Vậy chiều cao của tòa nhà là AR + RO ≈ 183,9 + 1,4 = 185,3 (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.