Câu hỏi:
12/08/2022 555
Tính các góc chưa biết của tam giác ABC trong các trường hợp sau:
BC = 10, AC = 20, \(\widehat {\rm{C}}\) = 80°;
Tính các góc chưa biết của tam giác ABC trong các trường hợp sau:
BC = 10, AC = 20, \(\widehat {\rm{C}}\) = 80°;
Quảng cáo
Trả lời:
Lời giải
Áp dụng định lí côsin ta có:
AB2 = BC2 + AC2 – 2BC.AC.cos\(\widehat {\rm{C}}\)
AB2 = 102 + 202 – 2.10.20.cos80°
AB = \(\sqrt {{{10}^2} + {\rm{ }}{{20}^2}--{\rm{ }}2.10.20.{\rm{cos}}80^\circ } \)
AB ≈ 20,75.
Áp dụng định lí sin ta có: \(\frac{{{\rm{AB}}}}{{{\rm{sinC}}}}{\rm{ = }}\frac{{{\rm{AC}}}}{{{\rm{sinB}}}}{\rm{ = }}\frac{{{\rm{BC}}}}{{{\rm{sinA}}}}\)≈ \(\frac{{20,75}}{{\sin 80^\circ }}\).
⇒ sinB = AC : \(\frac{{20,75}}{{\sin 80^\circ }}\) = 20 : \(\frac{{20,75}}{{\sin 80^\circ }}\) ≈ 0,949 ⇒ \(\widehat {\rm{B}}\) ≈ 71°37’.
⇒ sinA = BC : \(\frac{{20,75}}{{\sin 80^\circ }}\) = 10 : \(\frac{{20,75}}{{\sin 80^\circ }}\) ≈ 0,475 ⇒ \(\widehat {\rm{C}}\) ≈ 28°21’.
Vậy \(\widehat {\rm{B}}\) ≈ 71°37’ và \(\widehat {\rm{C}}\) ≈ 28°21’.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đặt d = PQ = 50m; h = AR là chiều cao từ giác kế đến đỉnh tòa nhà.
Ta có: \(\widehat {{\rm{RQA}}}\)= 79° và \(\widehat {{\rm{RPA}}}\)= 65°
tan\(\widehat {{\rm{RQA}}}\) = \(\frac{{{\rm{AR}}}}{{{\rm{QR}}}}\) = \(\frac{{\rm{h}}}{{{\rm{QR}}}}\) ⇒ QR = \(\frac{{\rm{h}}}{{{\rm{tan}}\widehat {{\rm{RQA}}}}}\) = \(\frac{{\rm{h}}}{{{\rm{tan79^\circ }}}}\).
tan\(\widehat {{\rm{RPA}}}\) = \(\frac{{{\rm{AR}}}}{{{\rm{PR}}}}\) = \(\frac{{\rm{h}}}{{{\rm{PR}}}}\) ⇒ PR = \(\frac{{\rm{h}}}{{{\rm{tan}}\widehat {{\rm{RPA}}}}}\) = \(\frac{{\rm{h}}}{{{\rm{tan65^\circ }}}}\).
Ta có:
PQ = PR – QR = \(\frac{{\rm{h}}}{{{\rm{tan65^\circ }}}}\) – \(\frac{{\rm{h}}}{{{\rm{tan79^\circ }}}}\) = h \(\left( {\frac{1}{{\tan 65^\circ }} - \frac{1}{{\tan 79^\circ }}} \right)\) = 50 (m)
⇒ h ≈ 183,9 (m)
Vậy chiều cao của tòa nhà là AR + RO ≈ 183,9 + 1,4 = 185,3 (m).
Lời giải
Lời giải
Tam giác ABC có: \(\widehat {\rm{A}}\) + \(\widehat {\rm{B}}\) + \(\widehat {\rm{C}}\) = 180°.
⇒ \(\widehat {\rm{C}}\) = 180° – \(\widehat {\rm{A}}\)– \(\widehat {\rm{B}}\) = 180° – 80° – 55° = 45°.
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{{\rm{AB}}}}{{{\rm{sinC}}}} = \frac{{{\rm{AC}}}}{{{\rm{sinB}}}}\) ⇒ AC = \(\frac{{{\rm{AB}}}}{{{\rm{sinC}}}}\).sinB = \(\frac{{127}}{{\sin 45^\circ }}\).sin55° ≈ 147 (km).
Vậy khoảng cách giữa trạm Cần Thơ và vệ tinh khoảng 147 km.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.