Một vệ tinh quay quanh Trái Đất, đang bay phía trên hai trạm quan sát ở hai thành phố Hồ Chí Minh và Cần Thơ. Khi vệ tinh nằm giữa hai trạm này, góc nâng của nó được quan sát đồng thời là 55° tại Thành phố Hồ Chí Minh và 80° tại Cần Thơ. Hỏi khi đó vệ tinh cách trạm quan sát Cần Thơ bao xa? Biết rằng, khoảng cách giữa hai trạm quan sát là 127km.

Quảng cáo
Trả lời:
Lời giải
Tam giác ABC có: \(\widehat {\rm{A}}\) + \(\widehat {\rm{B}}\) + \(\widehat {\rm{C}}\) = 180°.
⇒ \(\widehat {\rm{C}}\) = 180° – \(\widehat {\rm{A}}\)– \(\widehat {\rm{B}}\) = 180° – 80° – 55° = 45°.
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{{\rm{AB}}}}{{{\rm{sinC}}}} = \frac{{{\rm{AC}}}}{{{\rm{sinB}}}}\) ⇒ AC = \(\frac{{{\rm{AB}}}}{{{\rm{sinC}}}}\).sinB = \(\frac{{127}}{{\sin 45^\circ }}\).sin55° ≈ 147 (km).
Vậy khoảng cách giữa trạm Cần Thơ và vệ tinh khoảng 147 km.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đặt d = PQ = 50m; h = AR là chiều cao từ giác kế đến đỉnh tòa nhà.
Ta có: \(\widehat {{\rm{RQA}}}\)= 79° và \(\widehat {{\rm{RPA}}}\)= 65°
tan\(\widehat {{\rm{RQA}}}\) = \(\frac{{{\rm{AR}}}}{{{\rm{QR}}}}\) = \(\frac{{\rm{h}}}{{{\rm{QR}}}}\) ⇒ QR = \(\frac{{\rm{h}}}{{{\rm{tan}}\widehat {{\rm{RQA}}}}}\) = \(\frac{{\rm{h}}}{{{\rm{tan79^\circ }}}}\).
tan\(\widehat {{\rm{RPA}}}\) = \(\frac{{{\rm{AR}}}}{{{\rm{PR}}}}\) = \(\frac{{\rm{h}}}{{{\rm{PR}}}}\) ⇒ PR = \(\frac{{\rm{h}}}{{{\rm{tan}}\widehat {{\rm{RPA}}}}}\) = \(\frac{{\rm{h}}}{{{\rm{tan65^\circ }}}}\).
Ta có:
PQ = PR – QR = \(\frac{{\rm{h}}}{{{\rm{tan65^\circ }}}}\) – \(\frac{{\rm{h}}}{{{\rm{tan79^\circ }}}}\) = h \(\left( {\frac{1}{{\tan 65^\circ }} - \frac{1}{{\tan 79^\circ }}} \right)\) = 50 (m)
⇒ h ≈ 183,9 (m)
Vậy chiều cao của tòa nhà là AR + RO ≈ 183,9 + 1,4 = 185,3 (m).
Lời giải
Lời giải
Ta có hình vẽ sau:

AB là đoạn đường mà tàu đi được ban đầu nên AB = 15 km. AC là đoạn tàu đi được sau khi bẻ sang hướng tây bắc 20° nên AC = 12 km và \(\widehat {{\rm{CAm}}}\)= 20°. BC là khoảng cách từ tàu đến bến cảng.
\(\widehat {{\rm{CAm}}}\) và \(\widehat {{\rm{CAB}}}\) là hai góc kề bù ⇒ \(\widehat {{\rm{CAB}}}\) = 180° – 20° = 160°.
Áp dụng định lí côsin cho tam giác ABC ta có:
BC2 = AC2 + BC2 – 2.AC.BC.cos\(\widehat {{\rm{CAB}}}\)
BC2 = 152 + 122 – 2.12.15.cos20°
BC = \(\sqrt {{{15}^2} + {\rm{ }}{{12}^2}--{\rm{ }}2.12.15.{\rm{cos}}20^\circ } \)
BC ≈ 26,59 km.
Vậy khoảng cách từ tàu đến bến cảng khoảng 26,59 km.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.