Bài tập Toán 10 Bài 3. Nhị thức Newtơn có đáp án
42 người thi tuần này 4.6 1 K lượt thi 10 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Sau bài học này ta sẽ trả lời được câu hỏi trên như sau:
Với n = 4, ta có:
(a + b)4 = [(a + b)2]2 = [a2 + 2ab + b2]2 = [(a2 + b2) + 2ab]2
= a4 + 2a2b2 + b4 + 2(a2 + b2).2ab + 4a2b2 = a4 + 2a2b2 + b4 + 2a3b + 2ab3 + 4a2b2
= a4 + 2a3b + 6a2b2 + 2ab3 + b4.
(a + b)5 = (a + b)3(a + b)2 = (a3 + 3a2b + 3ab2 + b3)(a2 + 2ab + b2)
= a5 + 2a4b + a3b2 + 3a4b + 6a3b2 + 3a2b3 + 3a3b2 + 6a2b3 + 3ab4 + a2b3 + 2ab4 + b5
= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5
Với n là một số tự nhiên ta có công thức tổng quát:
(a + b)n = \(C_n^0{a^n}.{b^0} + C_n^1{a^{n - 1}}.{b^1} + C_n^2{a^{n - 2}}.{b^2} + ... + C_n^n{a^0}.{b^n}\).
Lời giải
a) Xét công thức khai triển (a + b)3 = a3 + 3a2b + 3ab2 + b3, có:
i) Các số hạng của khai triển trên là: a3; 3a2b; 3ab2; b3.
ii) Tương ứng với các số hạng ta có các hệ số xuất hiện trong khai triển trên lần lượt là: 1; 3; 3; 1.
Khi đó ta thấy \(C_3^0;C_3^1;C_3^2;C_3^3\) lần lượt bằng hệ số của các số hạng a3; 3a2b; 3ab2; b3 trong khai triển đã cho.
iii) Sử dụng máy tính ta có: \(C_3^0 = 1\), \(C_3^1 = 3\), \(C_3^2 = 3\), \(C_3^3 = 1\).
b) Ta có: (a + b)4 = (a + b)(a + b)3
= (a + b)(a3 + 3a2b + 3ab2 + b3)
= a4 + 3a3b + 3a2b2 + ab3 + a3b + 3a2b2 + 3ab3 + b4
= a4 + 4a3b + 6a2b2 + 4ab3 + b4
Bằng cách sử dụng máy tính, giá trị của \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) lần lượt là:
\(C_4^0 = 1,C_4^1 = 4,C_4^2 = 6,C_4^3 = 4,C_4^4 = 1\).
Khi đó ta thấy \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\) lần lượt bằng hệ số của các số hạng a4; 4a3b; 6a2b2; 4ab3; b4 trong khai triển đã cho.
Bằng cách sử dụng các kí hiệu \(C_4^0,C_4^1,C_4^2,C_4^3,C_4^4\), ta viết lại công thức khai triển trên như sau:
(a + b)4 = \(C_4^0\)a4 + \(C_4^1\)a3b + \(C_4^2\)a2b2 + \(C_4^3\)ab3 + \(C_4^4\)b4.
c) Từ kết quả câu câu a) và b) ta có dự đoán sau:
(a + b)5 = \(C_5^0\)a5b0 + \(C_5^1\)a4b1 + \(C_5^2\)a3b2 + \(C_5^3\)a2b3 + \(C_5^4\)ab4 + \(C_5^5\)b5
= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.
Kiểm tra dự đoán:
(a + b)5 = (a + b)3.(a + b)2 = (a3 + 3a2b + 3ab2 + b3)(a2 + 2ab + b2)
= a5 + 2a4b + a3b2 + 3a4b + 6a3b2 + 3a2b3 + 3a3b2 + 6a2b3 + 3ab4 + a2b3 + 2ab4 + b5
= a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5.
Lời giải
a) Áp dụng khai triển nhị thức Newton với a = x và b = -2, ta có:
(x – 2)4 = \(C_4^0\)x4 + \(C_4^1\)x3(-2) + \(C_4^2\)x2(-2)2 + \(C_4^3\)x(-2)3 + \(C_4^4\)(-2)4
= x4 – 8x3 + 24x2 – 32x + 16.
Vậy (x – 2)4 = x4 – 8x3 + 24x2 – 32x + 16.
b) Áp dụng khai triển nhị thức Newton với a = x và b = 2y, ta có:
(x + 2y)5 = \(C_5^0\)x5(2y)0 + \(C_5^1\)x4(2y)1 + \(C_5^2\)x3(2y)2 + \(C_5^3\)x2(2y)3 + \(C_5^4\)x(2y)4 + \(C_5^5\)(2y)5
= x5 + 10x4y + 40x3y2 + 80x2y3 + 80xy4 + 32y.
Vậy (x + 2y)5 = x5 + 10x4y + 40x3y2 + 80x2y3 + 80xy4 + 32y.Lời giải
a) \(C_4^0 + 2C_4^1 + {2^2}C_4^2 + {2^3}C_4^3 + {2^4}C_4^4 = 81\)
Ta có: \({\left( {1 + 2} \right)^4} = C_4^0{.1^4} + C_4^1{.1^3}.2 + C_4^2{.1^2}{.2^2} + C_4^3{.1^3}{.2^3} + C_4^4{.1.2^4}\)
⇔ \({3^4} = C_4^0 + C_4^1.2 + C_4^2{.2^2} + C_4^3{.2^3} + C_4^4{.2^4}\)
⇔ \(C_4^0 + 2C_4^1 + {2^2}C_4^2 + {2^3}C_4^3 + {2^4}C_4^4 = 81\) (đpcm).
b) \(C_4^0 - 2C_4^1 + {2^2}C_4^2 - {2^3}C_4^3 + {2^4}C_4^4 = 1\)
Ta có: (1 – 2)4 = \(C_4^0{.1^4} + C_4^1{.1^3}.( - 2) + C_4^2{.1^2}.{( - 2)^2} + C_4^3.1.{\left( { - 2} \right)^3} + C_4^4.{( - 2)^4}\)
⇔ (-1)4 = \(C_4^0 - C_4^1 + C_4^2{.2^2} - C_4^3{.2^3} + C_4^4{.2^4}\)
⇔ 1 = \(C_4^0 - 2C_4^1 + {2^2}C_4^2 - {2^3}C_4^3 + {2^4}C_4^4\) (đpcm).
Lời giải
Số lựa chọn mua một số vé trong số các vé xổ số đó là:
\(C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4\) (lựa chọn).
Mà theo công thức nhị thức Newton, ta có:
\(C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4 = C_4^0{.1^4} + C_4^1{.1^3}.1 + C_4^2{.1^2}{.1^2} + C_4^3{.1^3}.1 + C_4^4.1 = {\left( {1 + 1} \right)^4} = {2^4} = 16\).
Vậy khách hàng có 16 lựa chọn mua một số vé trong số các vé xổ số đó.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.